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Genetics of Obesity: What We Have Learned  
Over Decades of Research
Claude Bouchard

There is a genetic component to human obesity that accounts for 40% to 50% of the variability in body 
weight status but that is lower among normal weight individuals (about 30%) and substantially higher in 
the subpopulation of individuals with obesity and severe obesity (about 60%- 80%). The appreciation that 
heritability varies across classes of BMI represents an important advance. After controlling for BMI, ectopic 
fat and fat distribution traits are characterized by heritability levels ranging from 30% to 55%. Defects in at 
least 15 genes are the cause of monogenic obesity cases, resulting mostly from deficiencies in the leptin- 
melanocortin signaling pathway. Approximately two- thirds of the BMI heritability can be imputed to common 
DNA variants, whereas low- frequency and rare variants explain the remaining fraction. Diminishing allele 
effect size is observed as the number of obesity- associated variants expands, with most BMI- increasing or 
- decreasing alleles contributing only a few grams or less to body weight. Obesity- promoting alleles exert 
minimal effects in normal weight individuals but have larger effects in individuals with a proneness to obe-
sity, suggesting a higher penetrance; however, it is not known whether these larger effect sizes precede 
obesity or are caused by an obese state. The obesity genetic risk is conditioned by thousands of DNA vari-
ants that make genetically based obesity prevention and treatment a major challenge.
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Introduction
Obesity continues to be a major public health concern. The prevalence 
of obesity in adults aged 20 years and older, defined as BMI ≥ 30 kg/ m2, 
reached 30.5% in 2000 and 39.8% 15 years later (1). There are cur-
rently about 93 million American adults with obesity. The situation 
is just as alarming in youth (age 2- 19 years old), as the prevalence 
increased from 13.9% in 2000 to 18.5% in 2016. The prevalence of 
severe obesity (BMI > 40) increased at an even more alarming pace in 
adults, going from 3.9% in 2000 to 6.6% in 2010. About 15.5 million 
adult American individuals were classified as having severe obesity a 
decade ago. Importantly, the prevalence of BMI > 50 cases increased at 
an even faster rate (2). The future looks bleak, as some recent projec-
tions have shown (3). By 2050, it has been estimated that 50% of the 
adult population will have obesity. BMI > 35 will be the most common 
BMI category in female, non- Hispanic, Black, and low- income adults. 
Notably, the obesity epidemic is increasingly more apparent in rural 
areas of the world (4).

Research on the causes of obesity has about a 100- year- long history 
(5). One of the first attempts to understand the inheritance of body 
weight and body build, including obesity, was reported in 1923 by 
Davenport (6). He measured height and weight in 528 pairs of parents 
and their 986 male and 746 female offspring, 606 of which were adults. 
Based on the weight divided by height squared (Quetelet Index, or BMI 
as we call it now), he explored the segregation pattern from the parental 
to the offspring generation using five classes of BMI. In brief, he found 

some evidence for a parental- transmission effect of body mass on adult 
offspring. However, all five classes of mating produced a highly het-
erogeneous progeny in terms of body weight. For instance, when both 
parents had obesity, some of their adult descendants were either normal 
weight or had overweight or obesity, but none of them was lean or very 
lean.

Here, the status of our understanding of the genetic predisposition to 
obesity is reviewed. The lessons learned from genetic epidemiology 
are summarized. The contribution of single- gene defects to the risk of 
obesity and the protection against obesity is summarized. The impact 
of common and low- frequency genomic variants on the predisposition 
to obesity is evaluated based largely on the evidence accumulated from 
genome- wide association studies (GWAS). The potential contribution 
of obesity alleles to the morbidities commonly observed with obesity 
(pleiotropic effects) will not be covered herein. This review is greatly 
influenced by the author’s personal view on what are the most import-
ant findings and trends based on the overall body of literature on the 
subjects discussed. An apology is offered to all those who have contrib-
uted to this field but whose work could not be cited because of space 
limitations and journal guidelines.

Genetic Epidemiology
Genetic epidemiology relies mainly on observational data obtained on 
relatives, by descent or by adoption, and specific statistical methods in 
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order to decompose the total phenotypic variance of a trait into various 
components, including the fraction of the trait variance owing to ge-
netic transmission. Commonly investigated issues include testing for 
maternal and paternal effects, sex- specific effects in an offspring gener-
ation, assortative mating, and other circumstances of interest.

Heritability is a population parameter
It is important to appreciate that heritability is a population estimate of 
the relative contribution of genetic differences to a given trait. As such, 
knowing the heritability level for a trait, such as BMI, does not provide 
information applicable to an individual. For instance, consider the data 
depicted in Figure 1 as drawn from data of the Québec Family Study. 
The narrow sense heritability (additive genetic variance) is of particular 
interest, and it can be estimated, among other approaches, by compar-
ing the regression of a trait between both parents (midparent value) and 
their offspring in nuclear families (7). The figure illustrates the distri-
bution of individual scores for a level of heritability of 29%. This low 
genetic component to BMI can be explained by the fact that the individ-
uals of phase 1 of the Québec Family Study were generally of normal 
weight (see later text regarding this topic). Note that there were large 
interindividual differences in the relation between the midparent value 
for the trait and the values of their offspring. This is an illustration of 
the fact that the heritability level is an average population value and 
not a parameter that can be used to specify the level of risk for a given 
individual. For the interested reader, an informative presentation of the 
concept of heritability and its applications can be found in Visscher and 
collaborators (7).

Emerging consensus on heritability of BMI
Although there were attempts to quantify the genetic component of 
obesity prior to the 1980s, most of the research activities on this topic 
began in the 1980s. The research reported up to about the mid- 1990s 

has been summarized earlier (8,9), and the evidence up to the early 
2010s has been reviewed elsewhere (10). In brief, very high heritability 
(genetic variance over the total phenotypic variance × 100) estimates 
are found when studies are based solely on the comparison of pairs of 
monozygotic (MZ) and dizygotic (DZ) twins, reared apart or together 
(11- 14). Values range from about 50% to 90%, clustering around 70% 
to 80%. Nuclear family studies yield intermediate levels of heritability, 
whereas adoption studies produce the lowest estimates, although the 
heritability levels generated by both designs overlap to a large extent, 
with a range of 10% to 50%. Table 1 provides a summary of the ranges 
in heritability values reported for each type of study.

The reasons why the twin study designs lead to higher heritability 
estimates than other study types are debated and beyond the scope of 
this review. However, of critical importance is the role of the com-
mon environment in twin resemblance. For instance, MZ brothers 
and sisters share a single placenta during fetal life about 75% of the 
time, whereas DZ twins reside in two placentas during pregnancy. 
Moreover, MZ twins are treated during postnatal life more similarly 
than DZ twins or regular siblings by parents, relatives, and friends. 
Such conditions could translate into a higher common environmental 
effect in MZ twins. However, most twin studies of BMI report no 
substantial common environmental effect, which has the potential to 
inflate heritability estimates if untrue. In contrast, family and adop-
tion studies often report a common or shared environmental effect 
on BMI or other indicators of obesity. A comparison of within- pair 
difference in identical twins, same- sex fraternal twins, and same- sex 
non- twin siblings could potentially shed light on this issue. These 
comparisons were undertaken with data from the Longitudinal 
Survey of Youth 1979 (15). Members of MZ pairs were found to 
differ, on average, by 12 BMI percentile points, whereas same- sex 
fraternal twins differed by 16 points and opposite- sex fraternal twins 
and same- sex and opposite- sex regular pairs of siblings differed by 
29 points, all of which, just like DZ twins, share 50% of their genes 
by descent. This pattern is compatible with a shared environmental 
effect enhancing within- pair similarity beyond genetic covariance. 
It is an important point, as the shared environmental effect, if not 
properly quantified, is aggregated with the genetic variance in con-
ventional twin studies. Indirect evidence also comes from a pooled 
analysis of about 140,000 twin pairs showing that the heritability 
of BMI decreases from young adulthood to old age (when cotwins 
are less likely to be living in the same environment), with the role 
of nongenetic factors becoming progressively more important (16).

Many studies accumulated over the last few years have generated pop-
ulation estimates of the BMI or risk of obesity genetic component that 
are more aligned with the familial and adoption designs. Moreover, 
genetic heritability estimates for BMI derived from such studies have 
been concordant with the percentage of the variance in BMI accounted 

Figure 1 In this figure, the regression of offspring phenotype on the average phenotype 
value of the parents (midparent value) is depicted. The midparent value associates 
poorly with the phenotype in the offspring (low slope of the regression line). There 
are wide interindividual differences, as shown by the scatter of individual values in the 
presence of a heritability level accounting for 29% (additive genetic effect) of the age-  
and sex- adjusted values (BMI of offspring = 0.29 × midparent BMI). BMI scores were 
standardized after adjustment for age and sex within each generation. The heritability 
was derived from data on 667 trios. Unpublished data courtesy of Dr. Louis Pérusse.

TABLE 1 Overview of commonly observed ranges in heritability 
estimates for BMI, adiposity, or risk of obesity

Heritability, %

Nuclear families 30- 50
Adoption studies 10- 35
Twin studies 50- 90

Modified from Bouchard et al. (8).
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for by common and rare alleles, as shown in several recent genomic 
exploration studies and reviewed in a subsequent section.

Heritability in heterogeneous populations. In a review of 
25 family studies, it was shown that there was heterogeneity in the 
heritability estimates but that they clustered around 40% to 50% 
of the BMI variance with no detectable effect of sample size, age of 
individuals, and study setting (10). Many family studies were not 
included in the latter review, but the findings of the missing reports 
are quite concordant with the aforementioned conclusion (17- 19). 
Comparable BMI heritability levels were reported for the Tecumseh 
Community Health Study, the Muscatine Ponderosity Study, the Lipid 
Research Clinic, and the Québec Family Study (8,20). Two large studies 
illustrate the case of a moderate heritability level of BMI. In one of the 
largest studies to date, a Norwegian sample of 23,936 pairs of spouses, 
43,586 parent- offspring pairs, 19,157 sibling pairs, 2,400 second- degree 
relatives, as well as substantial numbers of pairs of twins and of other 
more remote relatives, the heritability of BMI reached 39% (21). In an 
adoption study, Vogler et al. used BMI data on adult adoptees (N = 660) 
and their biological parents, adoptive parents, biological siblings, and 
maternal and paternal half- siblings from the Danish Adoption Study 
and found that the BMI genetic component reached 34% (95% CI: 
31%- 37%) (22).

Interestingly, from serial measurements of BMI in the Framingham 
Study families, the mean BMI over 35 years and more was character-
ized by a heritability level of 37%, whereas the maximal BMI heritabil-
ity reached 40% (23). However, lower heritability levels were observed 
for 7- year changes in BMI (14%) and estimates of subcutaneous fat 
(12%) in 521 nuclear families of the Canada Fitness Survey (17). 
Maternal and paternal effects on the BMI levels of sons and daughters 
are quantitatively comparable even though some studies have reported 
slightly higher maternal effects (24). In some of the studies on the latter 
topic, the slight difference in maternal versus paternal effects could be 
explained by paternity issues.

Heritability levels have also been reported for fat mass and body fat 
percentage. The heritability of fat mass and body fat percentage reached 
39% and 47%, respectively, in the Québec Family Study (25). In 
extended pedigrees from 22 families comprising 2,506 individuals from 
a Dutch genetic isolate, the heritability of dual x- ray absorptiometry 
(DXA) fat mass was 46% (39% for fat mass index), whereas it reached 
42% for fat mass percentage (26). Globally, the genetic component of 
total adiposity is comparable with that of BMI.

Another approach to the quantification of genetic factors and shared 
environment on the risk of obesity is to compute the familial risk level, 
defined as the ratio of the risk of having obesity when a biological rela-
tive has obesity compared with the prevalence of obesity in the popula-
tion at large (λ coefficient or standardized relative risk ratio) (27). It is 
generally computed based on nuclear family or twin data. The familial 
risk of obesity (>90th percentile of BMI distribution) is about three 
times higher for individuals from families with a history of obesity 
(28,29). In contrast, the familial risk for severe obesity (>95th percen-
tile) reaches five to eight times compared with the level seen in relatives 
with family members of normal weight (28- 31). These data provided 
the first evidence that there may be a lower genetic component to BMI 
among normal weight individuals than among individuals with obesity.

The genetic component of variability of weight or weight for height 
is known to be low at birth, but it increases steadily during the first 

few years of life (11,32). The BMI heritability around the prepubertal 
period tends to be comparable with the levels observed in adulthood 
(33). Importantly, however, only about 50% of school- age children 
with obesity continue to have obesity during adulthood (34). Tracking 
is stronger in people with high BMI levels during the growing years 
than in those in the middle and lower part of the BMI distribution (35). 
However, childhood BMI level correlates only mildly with the level 
observed after 60 years of age (r ~ 0.25) (36).

We conclude that the genetic component of BMI in a population com-
prising the whole range of BMI values accounts for about 40% to 50% 
of the variance adjusted for age and sex.

Heritability varies across the BMI range. Over the last decade, 
data have accrued to show that the genetic component of BMI varies 
across the BMI range, with higher heritability levels observed in the 
subpopulation of individuals with obesity and severe obesity. In brief, 
the heritability of BMI or adiposity traits is stronger in the subpopulation 
of those who have obesity compared with the subpopulation of 
individuals in the normal body weight or even overweight range (37- 
39). This was illustrated recently based on parent- offspring pairs from 
the Framingham Heart Study. The heritability levels of BMI or DXA 
fat mass adjusted for height squared at the 90th percentile of their 
distributions were more than threefold higher than the heritability 
levels observed at the 10th percentile levels (40). Overall, these studies 
strongly suggest that global population heritability levels underestimate 
the genetic load impacting the susceptibility to gain an excessive 
amount of weight and adiposity in the subpopulation of people with 
obesity. This generalization is supported by the evidence on effect size 
at obesity alleles across the BMI range, as will be reviewed later in this 
review. It is also well supported by evidence on the familial risk for 
obesity when probands are selected from an increasing level of BMI, 
ranging from having normal weight to having severe obesity (28- 31).

Whereas the heritability level for a large heterogenous population, in 
terms of body weight, reaches about 40% to 50%, the heritability is 
lower (about 30% to 35%) in the subgroup of individuals with nor-
mal BMI, reflecting trends from available studies but increases to about 
50% in the subpopulation of individuals with overweight, 60% to 65% 
for the obesity class I subgroup, and 80% and more for the severe 
 obesity strata (Figure 2).

In summary, the studies on the heritability of BMI or obesity have gen-
erated findings that are highly heterogeneous. Some variability is to be 
expected given potential differences among populations, study designs, 
and sample sizes. The true heritability component of the BMI vari-
ance after adjustment for age, sex, and other appropriate concomitants 
reaches about 40% to 50%, but it is substantially higher in the subgroup 
of individuals in which having overweight and obesity is endemic. In 
contrast, heritability of BMI is lower among adults who are lean and 
normal weight. It is important to keep in mind that these population 
estimates could be substantially altered by major environmental disrup-
tions or major behavior changes.

Body fat distribution
Is there a genetic component to the profile of fat deposition beyond 
the well- established sex dimorphism characteristic of subcutaneous 
and deep fat depots? To address this question, we rely on studies that 
have controlled for the high correlations between total adiposity and 
indicators of fat distribution (8,41,42). Suggestive evidence of the 
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involvement of specific genes in the patterns of fat deposition is found 
in genetic deficiencies resulting in partial or generalized lipodystro-
phies (43). Several twin and family genetic epidemiology studies have 
been reported on subcutaneous fat distribution traits with adjustment 
for total adiposity or BMI or body mass, with twin studies recording the 
highest heritability levels (44). An early review of familial and adoption 
data based on anthropometric measurements suggested that the herita-
bility was less than 50% (45). Globally, family and extended pedigree 
studies suggest that indicators of adipose tissue distribution, such as ab-
dominal fat, upper body fat, lower body fat, waist- hip ratio, extremities- 
trunk skinfold ratio, subcutaneous fat relative to total fat mass, DXA 
android fat mass, DXA gynoid fat mass, and DXA android to gynoid 
fat mass ratio, are characterized by heritability estimates ranging from 
about 30% to 50% (18,25,26,46).

Visceral and liver fat
Two specific fat depots are of particular importance because of their 
potential implications in the etiology of morbidities associated with ex-
cess adiposity, namely abdominal visceral fat and liver fat. Here again, 
studies that have controlled for total adiposity or BMI are retained be-
cause of the strong correlation between the latter with visceral fat or 
liver fat (8,41,47- 49). Visceral adipose tissue (VAT) cross- sectional area 
was measured by computed tomography in the Québec Family Study 
(50) and the Health, Risk Factors, Exercise Training and Genetics 
(HERITAGE) Family Study (51). After adjustment for total fat mass, 
heritability levels ranging from 48% to 56% were reported. In a study 
of 521 adults from five large families, visceral fat was measured by 
magnetic resonance imaging and adjusted for height squared (visceral 
fat index, kilograms per meters squared) (52). The heritability of the 
visceral fat index reached 36%. Visceral fat is also a trait in which the 
heritability appears to be substantially higher (threefold higher) in the 

subgroup, with the highest level of computed tomography visceral fat 
(90th percentile) among those at the low end of the visceral fat distribu-
tion (10th percentile), although the visceral fat data were apparently not 
adjusted for total adiposity (40).

Studies on the heritability of hepatic fat are few and generally based 
on small sample sizes. Nonetheless, useful information on the poten-
tial role of genetic differences on liver fat has been reported. A familial 
aggregation study was undertaken in children with overweight with and 
without nonalcoholic fatty liver disease, with liver fat assessed by mag-
netic resonance imaging (48). There were 33 children with nonalcoholic 
fatty liver disease and 153 first-  and second- degree relatives in the study. 
After adjustment for BMI, the heritability of liver fat fraction reached 
39%. In the Insulin Resistance Atherosclerosis (IRAS) Family Study, 
the liver density was quantified from computed tomography scans in 
795 Hispanic American individuals and 347 African American individ-
uals (49). The heritability of liver density adjusted for age, sex, and insu-
lin sensitivity (but not adjusted for adiposity) ranged from 32% to 35%.

Of importance to the metabolic dysfunctions associated with obesity 
is the ectopic lipid deposition in skeletal muscle. In a study of muscle 
density (a surrogate for muscle fat infiltration) based on 471 individu-
als from eight multigeneration Afro- Caribbean families (3,535 relative 
pairs), the heritability level reached 35% with adjustment for multiple 
covariates, including BMI (53). Interestingly, one report based on the 
Framingham Study has found that renal sinus fat level was character-
ized by a genetic component of the order of 40% after adjustment for 
BMI or visceral fat (54).

The trends of the genetic- epidemiology estimates of heritability lev-
els for several adipose tissue distribution indicators are depicted in 
Figure 3. After controlling for age, sex, and total adiposity, the herita-
bility levels cluster around moderate values ranging from 30% to 55%. 
VAT levels tend to exhibit slightly higher genetic variance (with a peak 
at about 55%) than markers of subcutaneous fat topography. The lowest 
values seem to be found for ectopic fat deposition in liver and skeletal 
muscle, with heritability levels around 35%.

Assortative mating
One potential path that could contribute and, in the long term, increase 
the genetic component of obesity is via assortative mating, which is 
when mate selection is influenced by corpulence as opposed to com-
plete independence from body size (55,56). Assortative mating for 
corpulence has the potential to increase the concentration of obesity 
alleles among people who are in the upper segment of the BMI dis-
tribution over time (and concentrate the leanness alleles in the middle 
and lower parts of the distribution). One approach to quantify assor-
tative mating is simply to compute the correlation between spouses. 
The spousal correlation for BMI is typically ranging from about 0.1 
to 0.4, with most common values of the order of 0.15 to 0.20 (55- 58). 
Interestingly, it has been suggested that assortative mating for high and 
very high BMI has become more prevalent from the period preceding 
the worldwide obesity epidemic to the most recent decades (59). In one 
study based on a Swedish cohort, the following three findings were re-
ported: 1) in parents with obesity, the obesity prevalence reached 20% 
in their offspring, whereas it was only 1% when parents had normal 
weight; 2) there was no relation between the BMI of parents and that of 
their adopted offspring; and 3) simulation studies suggested that posi-
tive assortative mating for corpulence could lead to an increase in the 
prevalence of obesity over multiple generations (57). The finding that 

Figure 2 Overview of heritability estimates of BMI across the BMI range. Although the 
heritability of BMI in a heterogeneous population in terms of body mass or adiposity 
is in the 40% to 50% range, it is lower in the subgroup characterized by BMI in the 
normal weight range. The heritability level appears to increase almost linearly across 
the range of body weight classes, reaching a maximal level around >80% in the 
subgroup of adults characterized by severe obesity.
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spouse concordance for obesity translates into a twentyfold higher risk 
for obesity in adult offspring compared with biological offspring of nor-
mal weight parents emphasizes the importance of including assortative 
mating in obesity risk models. Because the genetic component of BMI 
is higher in adults with obesity compared with normal weight people, 
a small to moderate degree of assortative meeting can have a sizable 
impact on the risk of obesity in offspring from parents with obesity.

Response to experimental challenges
Further support for the notion that genetic differences contribute to 
human variability in adiposity comes from proof- of- concept experi-
mental studies. As proof- of- concept experimental studies are based on 
small sample sizes and owing to the difficulties and costs associated 
with the execution of such studies, they are mainly used to provide ev-
idence for or against a genetic role in modulating changes in adiposity 
or BMI in response to an experimental intervention, as opposed to an 
exact quantification of the magnitude of the genetic effect. Four types 
of intervention of interest to this review have been reported: chronic 
experimental overfeeding, negative energy balance caused by an exer-
cise regimen or very low- calorie diet, and response to bariatric surgery.

In one overfeeding protocol conducted in an inpatient setting with the 
participation of 12 pairs of MZ twins exposed to a caloric surplus of 
84,000 kcal over 100 days, there was 3 times more variability among the 
12 pairs compared with the variability seen between twin brothers for 

Figure 3  Overview of heritability estimates for several indicators of fat topography, 
including subcutaneous fat distribution traits, visceral fat, and ectopic fat depots. 
Whereas the estimates for upper versus lower body fat and subcutaneous fat depots 
are based on multiple studies, those pertaining to visceral adipose tissue, hepatic, and 
ectopic fat levels are supported by fewer studies.

Figure 4 Changes in body weight in three protocols altering energy balance in pairs of identical twins. The upper 
panel depicts the changes in body weight in response to experimental overfeeding (from Bouchard et al.) (60). The 
lower left panel illustrates the response of female identical twins to 28 days of a very low- calorie diet (from Hainer 
et al.) (61). The bottom right panel shows the response of identical twins to a standardized exercise intervention; 
caloric intake and nutrient composition were clamped at baseline level (from Bouchard et al.) (62).
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the gain in body weight (see “F ratio” in the top panel of Figure 4) (60). 
There was also significant within- pair resemblance for the overfeeding- 
induced changes in fat mass, visceral fat, and other indicators of fat 
distribution. These results strongly suggest that there are genetic factors 
contributing to adaptation to experimental overfeeding.

Two studies have dealt with the potential role of genetic differences 
in adaptation to standardized negative energy balance protocols. One 
weight loss study using a very low- calorie diet (about 400 kcal/d) for 
28 days was performed in 14 pairs of premenopausal identical twins 
with obesity in an inpatient setting (see lower left panel in Figure 4) 
(61). Individuals lost an average of 8.8 kg of body weight. There was 
very strong within- pair resemblance in the amount of weight and fat 
mass losses, with F ratios of 12 and more. In another experiment, seven 
pairs of male identical twins were exposed to a negative energy balance 
protocol in which they exercised on cycle ergometers twice a day over 
a period of 93 days while their caloric intake and macronutrient compo-
sition were clamped at the baseline weight maintenance level (62). The 
total energy deficit reached 58,000 kcal, and the mean weight loss was 
5 kg. Again, significant within- pair resemblance was observed for the 
changes in body weight (F ratio = 6.8) and total adiposity (F ratio = 14.1) 
(see lower right panel in Figure 4).

Finally, one study has explored whether there was an inherited compo-
nent to the variability in weight loss response to bariatric bypass sur-
gery (63). The investigators identified 13 pairs of first- degree relatives, 
10 pairs of patients living together but who were biologically unrelated 
by descent, and 397 randomly generated pairs of patients who were 
not cohabitating and were biologically unrelated. The first- degree rela-
tive patients exhibited a within- pair mean excess weight loss difference 
of 9%, whereas the difference for both the cohabitating pairs and the 
unrelated pairs of patients reached 25%, respectively. These data are 
suggestive of a genetic component to the weight loss response to gas-
tric bypass surgery, but these observations could not be replicated in 
another study (64). Further studies of this issue are clearly warranted.

Obesity at the Genome Level
Genetic epidemiology has provided ample evidence for the presence of 
a substantial genetic component to human obesity and related adiposity 
phenotypes. The next important question is whether we can explain the 
observed heritability levels in terms of genomic variants. Single- gene 
defects resulting in obesity are first introduced. Then, the focus shifts 
to common, low- frequency, and rare variants, the biology represented 
by these genomic variants, and interactions between weight loss under 
standardized conditions and genomic variants. Finally, genomic mark-
ers related to adipose tissue distribution and specific fat depot traits are 
reviewed.

Single- gene defects
There are obesity genes with large effect sizes that exhibit recogniz-
able Mendelian transmission patterns. These cases are commonly 
referred to as cases of Mendelian obesity in which excess adiposity 
is a predominant trait. They are typically characterized by endocrine 
disorders and hyperphagia. Most (but not all) Mendelian obesity cases 
are due to deficiency in a gene of the leptin- melanocortin signaling 
pathway, a major player in the regulation of energy balance (65). 
Thus far, defects in 16 genes have been identified in monogenic obe-
sity: adenylate cyclase 3 (ADCY3), brain- derived neurotrophic factor 

(BDNF), dual- specificity tyrosine phosphorylation- regulated kinase 
1A (DYRK1B), kinase suppressor of ras 2 (KSR2), leptin (LEP), leptin 
receptor (LEPR), melanocortin 4 receptor (MC4R), melanocortin- 2 
receptor accessory protein 2 (MRAP2), nuclear receptor subfamily 0 
group B member 2 (NR0B2), neurotrophic receptor tyrosine kinase 
2 (NTRK2), proprotein convertase subtilisin/kexin type 1 (PCSK1), 
proopiomelanocortin (POMC), peroxisome proliferator- activated 
receptor γ (PPARG), SH2B adaptor protein 1 (SH2B1), SIM BHLH 
transcription factor 1 (SIM1), and TUB bipartite transcription factor 
(TUB) (66,67). Table 2 provides a list of genes most frequently iden-
tified as causal of Mendelian obesity along with their prevalence and 
notes on phenotypic manifestations (68). Although the prevalence es-
timates of these Mendelian disorders vary across studies, they individ-
ually account for a small percentage of obesity cases. However, in the 
aggregate, they are responsible for 5% to 10% of obesity cases in pop-
ulations of European descent, but it could be higher depending on the 
population and the extent of the diagnosis effort (69). The prevalence 
of severe obesity cases can be markedly higher in inbred populations 
as shown in a recent study of consanguineous families from Pakistan 
in which 59% of cases in a cohort of 225 children with severe obesity 
were shown to have a likely genetic cause (70). It has been estimated 
that one person in 24,000 of the United States population carries a 
deficient allele at LEPR, POMC, or PCSK1 (71). One feature that 
these single- gene defects have in common is that the excess weight 
is manifested early in life and tends to be severe. Another important 
characteristic is that the weight status of carriers of monogenic obesity 
alleles can be influenced by the overall polygenic obesity risk level 
of the individual, as was recently shown for pathogenic mutations in 
MC4R (72). To illustrate, carriers of MC4R mutations known to cause 
obesity weigh approximately 14 kg less (for a body height of 1.7 m) if 
they have a low polygenic risk score compared with those with a high 
score in the UK Biobank population.

Some rare variants with large effect sizes may increase BMI, total adi-
posity, and the risk of obesity, such that carriers of these variants may be 
undistinguishable from true cases of Mendelian obesity, as suggested 
by a screen for such variants in a large population (73). However, such 
cases do not exhibit the other clinical features commonly observed in 
cases of single- gene defects. Many more Mendelian obesity cases will 
likely be uncovered as whole- genome sequencing becomes increas-
ingly used in clinical studies. For instance, explorations on the number 
of loss- of- function variants at protein- coding genes have suggested that 
a person of European descent carries almost 100 alleles causing loss of 
function, with 18 of them in the homozygous state (74). Some of these 
naturally occurring human gene knockouts should be of relevance to 
obesity.

In addition to these Mendelian obesity genes, there are Mendelian 
disorders in which excess weight is a secondary condition. They are 
commonly referred to as syndromic obesity cases, and there are dozens 
of them (75). One interesting subset of these patients with syndromic 
obesity is grouped under the Bardet- Biedl syndrome (BBS). The BBS 
is heterogeneous, and 19 genes have been implicated in its etiology 
thus far. Abnormal ciliary function is a common feature of BBS cases, 
but the relation with the upper body obesity observed in these patients 
varies with the gene involved and is not always understood (76).

Common, low- frequency, and rare DNA variants
Most obesity cases are not caused by single- gene defects with recog-
nizable Mendelian transmission patterns. Rather, they arise from a 
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combination of genetic predisposition, environmental exposures, and 
obesogenic behavior. Such a genetic predisposition has a complex ge-
nomic anatomy, as revealed by advances of the last decade based on the 
exploration of the whole genome with large panels of single- nucleotide 
polymorphisms (SNPs). It is useful to distinguish among three classes 
of SNPs: a common SNP with a minor allele frequency (MAF) of 5% 
or more, a low- frequency SNP with a MAF in the range of <5% to 1%, 
and a rare variant in which the minor allele has a frequency of <1% (77). 
It is important to appreciate that microarray- based chips used in past 
GWAS provide generally good coverage of common and low- frequency 
SNPs depending on the platform and chip used. However, rare variants 
are not adequately covered in the majority of GWAS reported to date. It 
is expected that a whole- genome sequencing approach will ensure more 
complete coverage of all three types of variants in the future.

Genome- wide association findings. This review begins with 
a summary of findings on genomics and body height, an important 
correlate of weight, because it has generated the largest GWAS 
explorations to date on the genomic architecture of a complex trait. 
Lessons learned on the genomics of human height are useful for 
the understanding of the genomics of human variability in BMI, 
adiposity, and risk of obesity. It may be hard to understand in our 
era, but, earlier in the 20th century, it was not uncommon to read 
in a textbook of human genetics that variability in human height 
was determined by alleles at a handful of genes. The view that 

most complex human traits were conditioned by alleles at a small 
number of genes prevailed up to the 1990s, when genome- wide 
linkage and later association studies could be undertaken as a result 
of technological advances. Height is variable (SD ~ 7 cm) among 
individuals in a given population and is one of the most heritable 
morphological traits in humans, with estimates around 80% (78,79). 
What are the most important lessons we have learned regarding the 
genomic architecture of human height?

In brief, a number of genes have been implicated in single- gene defi-
ciencies causing short stature (e.g., insulin- like growth factor 1 [IGF1], 
insulin- like growth factor 1 receptor [IGF1R], natriuretic peptide 
receptor 2 [NPR2], short stature homeobox [SHOX], aggrecan [ACAN], 
SRY- box transcription factor 9 [SOX9], collagen type X alpha 1 chain 
[COL10A1], growth hormone receptor [GHR]) or acromegaly (e.g., 
growth hormone [GH], IGF1, fibrillin 1 [FBN1], aryl hydrocarbon 
receptor- interacting protein [AIP], menin 1 [MEN1], cyclin- dependent 
kinase inhibitor 1B [CDKN1B]). Several large- scale GWAS for height, 
with increasing sample sizes, have been published in the last decade 
(80- 85), and they have reported growing numbers of common height- 
increasing or - decreasing alleles. When very large panels of SNPs are 
considered simultaneously in the analysis, common MAF variants 
account for more than half (45%) of the height heritability (83,86). 
When rare and low- frequency coding variants were investigated in 
more than 700,000 individuals, 83 coding variants associated with 

TABLE 2 Examples of single- gene defects responsible for human Mendelian obesity cases

Gene Mutation type Prevalence Associated phenotypes

Leptin Autosomal recessive inheritance <100 patients worldwide Hyperphagia
Gonadotropic and thyrotrophic insufficiency
Alteration in immune function

LEPR Autosomal recessive inheritance <3% of patients with severe early- onset 
obesity

Hyperphagia
Gonadotropic, thyrotrophic, and somatotropin 

insufficiency
Alteration in immune function

MC4R Heterozygous or homozygous loss of 
function

About 5% of children with severe obesity, 1% 
of adults with severe obesity, and 0.1% of 
the general population

Hyperphagia
Hyperinsulinemia
High lean mass and bone mineral density

NTRK2 Heterozygous missense mutation <10 patients worldwide Hyperphagia
Developmental delay
Behavioral disturbance
Blunted response to pain

PCSK1 Autosomal recessive inheritance or 
compound heterozygotes

<20 patients worldwide Hyperphagia
Adrenal, gonadotropic, somatotropin, and thyro-

trophic insufficiency
Postprandial hypoglycemia

POMC Autosomal recessive inheritance or 
compound heterozygotes

<10 patients worldwide ACTH insufficiency
Mild hypothyroidism
Pale skin and red hair in Caucasian individuals

SIM1 Translocation between chromosome 
1p22.1 and 6q16.2 or dominant 
inheritance

<50 patients worldwide Neurobehavioral abnormalities
Memory deficit, emotional lability, or autism- like 

behavior

Modified and amplified from Huvenne et al. (68).
ACTH, adrenocorticotropic hormone.
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height were identified, with 24 alleles affecting height by more than 
1 cm plus 4 alleles (at AR, CRISPLD2, IHH, and STC2) with an effect 
size of at least 2 cm (87). It has been suggested that an excess of 10,000 
genomic variants is necessary to account for the heritability of height, 
with the top 700 SNPs having a median effect size of about 1.4 mm per 
allele and the remaining loci having a median effect size of <0.1 mm 
per allele (81,88).

The lessons learned on the genomic architecture of height are relevant 
to the case of BMI and total adiposity even though the heritability of 
BMI is substantially lower than human height in a global population 
perspective; that is, in the range of 40% to 50% of age-  and sex- adjusted 
variance as reviewed previously in this review. GWAS explorations 
aimed at identifying SNPs associated with BMI have been based on 
increasingly larger sample sizes (73,80,82,84,89- 108). When only the 
SNPs significant at the genome- wide level (P < 5 × 10−8) are consid-
ered, the variance in BMI accounted by the panel of SNPs remains low 
primarily because of the sample size limitations. Therefore, the BMI 
variance explained by mostly common SNPs was of the order of 2% 
in early studies (80,94,96) but increased to about 6% in more recent 
reports based on larger samples (84).

However, when very large panels of SNPs or all genotyped SNPs are 
included under the assumption that the sample size is extremely large, 
or when SNPs at a less- stringent threshold are considered with the 
requirement that the direction of the association for each minor allele is 
concordant with prior studies, then more than 20% of the BMI variance 
is accounted for (82,91,95,96,106). In support of this conclusion, the 
narrow- sense heritability of BMI was estimated at 42%, with common 
SNPs explaining 23% of the BMI variance in a study based on a pop-
ulation from Iceland using a combination of close and distant relatives 
combined with a genome- wide panel of SNPs (106). The notion that 
common SNPs account for about two- thirds of the BMI heritability has 
been supported by several studies. Yang et al. observed that the common 
SNPs explained 27% of the BMI variance, a figure that was exactly rep-
licated by Ge and collaborators (82,91). It is also concordant with the 
findings derived from 2.1 million SNPs in about 120,000 middle- aged 
adults of the UK Biobank in which common SNPs accounted for 23% 
of the BMI variance (95). A useful observation is that there are hotspots 
in the human genome where clusters of SNPs associate with height or 
BMI (88).

If common SNPs account for approximately two- thirds of the BMI her-
itability, then low- frequency and rare variants could potentially explain 
the missing fraction of the heritability estimate. No compelling data, 
to our knowledge, have been published to date on this topic, but strong 
support for this notion is being reported in an unpublished paper in which 
whole- genome sequencing was performed on 21,620 unrelated individu-
als of European ancestry (Wainschtein et al. bioRxiv, doi:10.1101/588020, 
unpublished data). The whole heritability (40%) of BMI was recovered, 
with about one- third of the heritability explained by rare variants in genomic 
regions of low linkage disequilibrium. Taken together, the most recent data 
suggest that the heritability of BMI can be fully explained by a large num-
ber of common SNPs combined with low- frequency and rare variants.

How many DNA variants does it take to account for the heritability of 
BMI? It is too early to be able to address this question with confidence. 
However, some rough indications can be obtained from findings on the 
genomic architecture of height and exploration of the same issue for 
BMI. In the case of height, it requires an excess of 10,000 DNA vari-
ants to account for the heritability level, with effect sizes decreasing as 

additional SNPs are incorporated into the polygenic system. It is very 
likely that the same scenario will apply to BMI. For instance, Locke 
and colleagues estimated that about 1,000 SNPs were true BMI SNPs 
in a first attempt to address this question (96). A similar effect- size pat-
tern as for height is emerging for BMI, with an alpha- ketoglutarate- 
dependent dioxygenase (FTO)- risk allele (the most strongly associated 
SNP) accounting for about 0.4 kg/m2 but with the effect size decreas-
ing rapidly to about 0.1 kg/m2 for associated SNP number 20 and 0.05 
kg/m2 for SNP number 30 (80). Diminishing effect sizes should be 
expected with the growing number of variants, with most variants con-
tributing BMI- increasing or - decreasing alleles with effect sizes of a 
few grams or less. This scenario is illustrated schematically in Figure 5. 
Even though there are rare alleles increasing or decreasing body mass 
by kilograms, most alleles impact weight much more subtly, often by a 
few grams or one gram and less.

An important observation is that the effect size of obesity alleles 
increases at the upper end of the BMI distribution compared with the 
low and middle range of the same distribution. For instance, the effect 
size of an FTO- risk allele on BMI was more than six times greater at 
the 90th percentile compared with the 10th percentile of the BMI dis-
tribution in a study based on the Framingham Heart Study population 
(39). The genotypic risk score based on obesity- promoting alleles at 
eight loci was more strongly associated with BMI in the upper end of 
the BMI distribution in a large pediatric population (109). The notion 
that the top obesity alleles have uniform effect sizes across the BMI 
range was also dispelled in a large study based on more than 75,000 
adults of European ancestry (37). The effects of nine SNPs at eight obe-
sity loci (FTO; PCSK1; transcription factor 7- like 2 [TCF7L2]; MC4R; 
FA complementation group L [FANCL]; gastric inhibitory polypeptide 
receptor [GIPR]; mitogen- activated protein kinase 5 [MAP2K5]; and 
5′- nucleotidase, cytosolic II [NT5C2]) increased across the BMI distri-
bution, suggesting that obesity alleles exert minimal effects in lean and 
normal weight individuals but carry growing deleterious effects in indi-
viduals with a proneness to overweight or obesity. Attempts to uncover 
a similar pattern regarding the effects of height- impacting alleles across 

Figure 5 Schematic illustration of the relation between effect size on weight and the 
number of SNPs accounting for the heritability of BMI across the three classes of allele 
frequencies. SNP, single- nucleotide polymorphism.
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the body height distribution were not successful (37,40). Globally, 
these observations reveal that obesity- promoting alleles have greater 
penetrance in people who have a proneness toward overweight and obe-
sity (Figure 6). However, the available data do not establish whether the 
larger effect size of obesity- promoting alleles results from the prevail-
ing physiological and metabolic environment of people with obesity or 
whether the larger effect sizes preceded weight gain and obesity.

Low- frequency and rare variants. One important issue is whether 
low- frequency and rare variants can offer insights into the genomic 
architecture of BMI or the risk of obesity. Most common DNA variants 
captured by the usual genotyping platforms cluster in noncoding 
genomic regions. In contrast, low- frequency and rare variants could 
impact coding and regulatory elements more often, as suggested by the 
1000 Genomes Project (110). Low and rare MAF variants tend to have 
larger effect sizes and to be of more recent origin than common alleles 
(schematically illustrated in Lupski and colleagues) (111). Importantly, 
only about 68% of the low- frequency and rare variants (defined here as 
MAF < 0.01) is captured by imputation (82).

A search for rare coding variants associated with BMI was under-
taken in 718,734 individuals from 125 studies with exome- genotyping 
arrays yielding 14 rare coding variants in 13 genes (73). One coding 
variant was found in each of the following genes: zinc finger and BTB 
domain- containing 7B (ZBTB7B), rap guanine nucleotide exchange 
factor 3 (RAPGEF3), RAB21, member RAS oncogene family, zinc 
finger homeobox 3 (ZFHX3), ectonucleoside triphosphate diphospho-
hydrolase 6 (ENTPD6), zinc finger RNA- binding protein 2 (ZFR2), 
and zinc finger protein 169 (ZNF169). Two coding variants were 
identified in GIPR, one in MC4R, and one in kinase suppressor of ras 
2 (KSR2). The largest effect size was observed in the carrier of a stop- 
codon mutation in MC4R in which the carrier weighed 7 kg more than 

noncarriers. Overall, the effect size of the coding variants is about 10 
times larger than that of common variants (73).

In a study comparing common and low- frequency variants associated 
with obesity in 1,509 children with obesity and 5,380 controls, it was 
found that both types of variants around the BDNF, LEPR, MC4R, 
POMC, and SH2B1 loci were involved in the pathogenesis of early- 
onset obesity (104). It was also reported that rare copy number vari-
ants (CNVs) affecting genes participating in the neuronal regulation of 
energy balance contribute to severe cases of obesity, particularly CNVs 
impacting genes of the G protein– coupled receptors family. In an anal-
ysis of DNA sequence data in 119 genes performed in 2,548 children 
with obesity and 1,117 controls that excluded MC4R and leptin muta-
tions, rare variants in angiopoietin- like 6 (ANGPTL6), BBS syndrome 1 
(BBS1), BBS syndrome 2 (BBS2), clock circadian regulator (CLOCK), 
guanine nucleotide- binding protein Gs (GNAS), and McKusick- 
Kaufman syndrome (MKKS) were nominally and significantly asso-
ciated with obesity (112). A total of 52 variants were identified, and 
they were found to contribute to obesity in 2% of cases compared with 
controls. One can make a strong case for a contribution of CNVs to 
obesity, as they play a large role in human genomic variability. This 
is well supported by data showing associations between CNVs from 
several genomic regions and obesity, including loci at 11q11, 1p21.1, 
10q11.22, 10q26.3, 16q12.2, 16p12.3, and 4q25 (113).

Variants in monogenic obesity cases and in candidate genes 
contribute to common obesity forms. One important issue is 
whether loci of Mendelian obesity cases (rare, single- gene defects) 
harbor other alleles that are more common and whether they influence 
BMI or the risk of obesity. In one early paper, Farooqi and colleagues 
showed that heterozygotes for the deletion of a glycine residue (D G133) 
in the leptin gene, resulting in a partial leptin deficiency, was associated 
with lower serum leptin levels and higher levels of adiposity (114).

A search for the potential contribution of common BMI SNPs to severe 
obesity was undertaken by genotyping more than half a million SNPs 
across the autosomal genome in 775 severe obesity cases and 3,197 
controls (115). Ten alleles shown to increase BMI in prior studies were 
also more prevalent in individuals with severe obesity. It is reasonable 
to conclude from the aforementioned and other data (116) that common 
variants in monogenic obesity loci are part of the common obesity poly-
genic profile and that common obesity SNPs are also contributing to the 
risk of obesity in severe single- gene defect cases.

In the early phase of obesity genetic research, the emphasis was on 
candidate genes of obesity (See Rankinen et al. for a review) (117). 
A literature search identified 547 candidate genes derived from mul-
tiple types of studies, and the contribution of SNPs located in ±10 
kb flanking sequences around these genes was investigated (118). It 
was concluded that there is some evidence for enrichment of associ-
ation between these candidate genes and BMI variation, but that the 
level of association is small. DNA variants at traditional candidate 
gene loci have generated some relevant findings, but most of the BMI 
variability is explained by sequence differences at noncandidate gene 
loci. Another line of evidence relates to CNV at candidate genes, as 
illustrated by studies on copy number at a locus encompassing the 
amylase alpha 1A (AMY1) gene and its association with obesity (119).

Polygenic risk scores and prediction. Who is at risk of 
developing obesity over time? This is a question generating a lot of 
attention because of its potential public health and clinical utility. 

Figure 6 Schematic illustration of the effect size of obesity alleles across BMI classes. 
A typical obesity allele has a minimal effect in lean and normal weight individuals, but 
it has a much larger impact in individuals with excess weight, including those with 
severe obesity. The exact shape of the curve is currently unknown. Based on data 
reviewed in the text.
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Given the evidence for a significant genetic transmission of BMI 
level or risk of obesity across generations, it is not surprising that 
there are attempts to use genomic variants to predict future levels 
of BMI or the risk of developing obesity with age. Multiple small 
and large companies are engaged in this process and are offering 
commercial products to the public even though there is no evidence 
to date that their panels of SNPs have appropriate sensitivity and 
specificity to qualify as useful predictors.

The research on genomic predictors of obesity traits has been closely 
linked to incremental progress in sample size and to the number of 
loci identified in reports on GWAS of BMI. One of the first reports 
was based on 12 loci, and it yielded an area under the curve (AUC) 
for the receiver operating characteristic (ROC) curve of about 0.57 
(a random classification would generate an AUC of 0.50) (120). A 
similar AUC (0.57) was obtained when the panel of SNPs was aug-
mented to 32, which is likely an indication that the added SNPs were 
characterized by small effect sizes (80). Subsequently, the number 
of SNPs significant at the genome- wide level was increased to 97 
based on a larger sample size of 339,224 participants (96). When 
attempting to predict obesity (BMI ≥ 30), the AUC under the ROC 
curve reached 0.60. Even though the increase in prediction was very 
modest, a growing number of BMI- increasing alleles was associated 
with a higher body weight for height. For instance, individuals who 
were between 160 and 180 cm tall and who were carrying >104 BMI- 
increasing alleles were heavier by about 10 kg compared with those 
who carried <78 such alleles.

More recently, genome- wide polygenic predictors (GPS) based on 
more than 2 million variants accounting for 23% of the variance 
in BMI were developed (95). The GPS best correlated with BMI 
(r = 0.29) and validated in a large sample of the UK Biobank was 
retained for further testing. When BMI was investigated in relation to 
deciles of the GPS in a sample of 288,016 middle- aged individuals, 
there was a strong gradient with a mean BMI of 25.2 in the lowest 
decile compared with a BMI of 30 for those in the top GPS decile, 
with 83% of those in the upper decile having overweight or obesity 
(95). The prevalence of severe obesity (BMI > 40) reached 0.2% in 
the lowest GPS decile versus 5.6% in the highest decile. In 3,722 
young adults from the Framingham Offspring and the Coronary 
Artery Risk Development in Young Adult studies who were followed 
for a median of 27 years, 16% of those in the top GPS decile devel-
oped severe obesity, whereas only 1.3% in the lowest GPS decile 
developed severe obesity. Finally, in 7,861 children followed from 
birth to 18 years of age from the Avon Longitudinal Study of Parents 
and Children study, the weight differences between the lowest and 
the top GPS deciles at 18 years of age reached 12 kg, suggesting that 
a prediction of future risk of obesity based on panels of genome- wide 
variants could eventually be implemented even in the growing years 
(95). AUC under the ROC curves were not available for these various 
GPS predictions of BMI levels, but they are likely below 0.80, a level 
that is often considered as a threshold for truly useful clinical appli-
cations. Despite the technical and practical challenges arising from 
predictors based on very large panels of SNPs, other genomic vari-
ants, and clinical variables, it may be possible, with more research, 
to generate future, powerful predictors of body weight trajectory and 
the risk of obesity over time.

Population differences in obesity genomics. Most of the 
findings summarized previously in the review were generated in 
populations of European ancestry. Is the genomic architecture of 

BMI level or obesity risk emerging in African or Asian individuals 
comparable with what is observed in people of European descent? 
Although the evidence is even more incomplete in other ethnic groups, 
the evidence accumulated thus far indicates that most common BMI 
SNPs have comparable effects among Asian, African, and White 
European individuals (99,102,103). For instance, 79% of BMI SNPs 
identified in European populations exhibited consistency in the 
direction of the MAF effect on BMI in people of African descent 
and 91% in samples of East Asian individuals (96). However, several 
BMI loci have been identified in people of African descent that were 
not found in populations of European descent (121). Comparisons 
of BMI- related loci between European and African individuals are 
especially useful for the understanding of its genomic architecture 
given the lower level of linkage disequilibrium observed in African 
populations.

Genomics and the biology of obesity. A high- altitude view 
posits that the risk of obesity is defined by physics, physiology, 
behavior, and the social and physical environment. What have we 
learned from obesity genomics that could inform us about the role 
of biological heterogeneity on the risk of obesity? This question 
is highly relevant, as we have a much better understanding of the 
extent of human genomic variability. More than 88 million genomic 
variants with a frequency > 1% have been identified, of which about 
85 million are SNPs, 8 million of them have a frequency > 5%, 3.6 
million are short insertions/deletions, and 60,000 are structural 
variants (110). In addition, a typical genome harbors about 2,500 
structural or chromosomal variants, including up to 1,000 large DNA 
deletions and as many as 160 copy number variants. On average, each 
person carries about 150 DNA variants that yieldtruncated mRNAs 
leading to partial or complete knockout of gene products, and more 
than 10,000 variants alter the amino acid sequences of proteins. 
Based on the whole- genome sequencing of 185 genomes of the 1000 
Genomes Project, it was estimated that a person of European descent 
carries about 100 variants causing a loss of function of the gene 
products, with 18 of them in the homozygous state (74). By some 
estimates, an individual selected at random carries from 200,000 up 
to 500,000 rare variants, which tend to be of recent origin and are 
often unique to a pedigree (111). Notably, the genome of a given 
person differs from the human reference genome at up to 5 million 
DNA sites.

What is the altered biology resulting from all this genomic variability 
that influences the risk of obesity? It is still too early in the research to 
be able to paint a complete picture depicting the complex connections 
between DNA sequence variants and the regulation of energy balance. 
The available data and insights are based on small subsets of the global 
panel of genomic variants defining the obesity genotype. However, as 
common variants identified in the early GWAS have larger effect sizes 
than variants uncovered later with larger sample sizes, valuable lessons 
can be derived from these early efforts.

In the GWAS report by Locke et al., 97 BMI loci were identified at the 
genome- wide significance level (96). These loci were interrogated via 
a bioinformatics pipeline to uncover tissues, gene sets, and pathways 
contributing to the predisposition to obesity. About 500 gene sets were 
found to be enriched for the genes indexed by the 97 BMI SNPs. Gene 
expression profiles in genes near BMI- associated SNPs revealed that 
there were 31 significantly enriched tissues, of which 27 were vari-
ous brain regions. Strong gene enrichment was observed in the hypo-
thalamus, pituitary gland, hippocampus, and limbic system. The most 
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significant gene sets revealed pathways related to synaptic function; 
glutamate signaling; noradrenaline, dopamine, and serotonin release 
cycles and γ- aminobutyric acid (GABA)- receptor activity (96). Other 
relevant pathways were related to physical activity, integration of energy 
metabolism, secretion and action of insulin, mechanistic target of rapa-
mycin signaling and cell growth, neurotrophin signaling, calcium chan-
nels, mitogen- activated protein kinase activity, chromatin organization, 
and ubiquitin ligases. Gene prioritization was undertaken based on 
five lines of evidence. A panel of 64 potential obesity genes emerged, 
including several that overlap with central nervous system (CNS) pro-
cesses (ELAV- like RNA- binding protein 4 [ELAVL4], glutamate iono-
tropic receptor delta type subunit 1 [GRID1], cell adhesion molecule 2 
[CADM2], neurexin 3 [NRXN3], and secretogranin 3 [SCG3]), mono-
genic obesity syndromes (MC4R, BDNF, BBS syndrome 4 [BBS4], 
SH2B1, neuronal growth regulator 1 [NEGR1], and POMC), insulin, 
lipid and energy metabolism, adipogenesis (TCF7L2, GIPR, insulin 
receptor substrate 1 [IRS1], forkhead box O3 [FOXO3], ankyrin repeat 
and SOCS box containing 4 [ASB4], regulatory- associated protein of 
mTOR complex 1 [RPTOR], NPC intracellular cholesterol transporter 
1 [NPC1], cAMP- responsive element binding protein 1 [CREB1], TLC 
domain containing 3B [TLCD3B], apolipoprotein B receptor [APOBR], 
and hydroxysteroid 17- β dehydrogenase 12 [HSD17B12]), RNA bind-
ing and processing (polypyrimidine tract binding protein 2 [PTBP2], 
ELAVL4, CUGBP Elav- like family member 1 [CELF1], and RALY 
RNA binding protein like [RALYL]), mitogen- activated protein kinase 
signaling pathway (MAP2K5 and mitogen- activated protein kinase 3 
[MAPK3]), and cell proliferation or cell survival (Fas apoptotic inhib-
itory molecule 2 [FAIM2], parkin RBR E3 ubiquitin protein ligase 
[PRKN], and olfactomedin 4 [OLFM4]).

Monogenic obesity is generally characterized by gene deficiencies alter-
ing hypothalamic regulation, resulting in hyperphagia and disruption of 
energy homeostasis (122). In contrast, based on gene expression studies 
of 106 genes in more than 20 tissues, it has been reported that the expres-
sion of common obesity- susceptibility genes was particularly enriched 
in the insula and substantia nigra, brain regions involved in addiction 
and reward (123). Even though genome- wide explorations have empha-
sized that genes and pathways expressed in brain regions dominate the 
genomic signature of obesity, there is evidence that adipocyte biology 
disturbances in lipolysis and adipogenesis are also involved (96,124).

An important and consistent signal from GWAS reports relates to the 
strong associations between the FTO locus and obesity in humans across 
ethnicities. Variants in the first intron were first shown by Frayling  
et al. to be associated with BMI and obesity, with the homozygous for 
the most potent risk allele weighing up to 2 kg more than those without 
the risk allele (90). This finding has been replicated multiple times in 
different populations, and several alleles in the first intron shown to be 
in strong- linkage disequilibrium have also been found to be associated 
with obesity (125,126). Although FTO was found to have demethylase 
activity and to be expressed in hypothalamic regions, no clear connec-
tion could be established between the FTO variants, gene expression, 
and functional markers across a wide range of investigative strategies 
(127). This led to the study of other candidate genes encoded in the 
surrounding genomic region, including RPGR- interacting protein 1 like 
(RPGRIP1L), cut-like homeobox 1 (CUX1), and iroquois homeobox 3 
(IRX3) as potential mechanistic links between the FTO- intronic variants 
and obesity. Reduced expression of CUX1 decreased the expression of 
FTO and RPGRIP1L. RPGRIP1L may regulate ciliary signaling, sug-
gesting potential similarities with aspects of the BBS and perhaps an 
involvement of ciliary deficiencies in common obesity forms. In vitro 

and in vivo studies in model organisms provided evidence that the FTO- 
risk alleles reduced expression levels of FTO, RPGRIP1L, and CUX1, 
leading to attenuated leptin signaling with higher food intake and fat 
mass (128,129). Another line of research has evidenced that the homeo-
box gene, IRX3, is a candidate for mediating the effects of the FTO- 
intronic variants. The IRX3 promoter was found to interact over a long 
range with FTO genomic regions harboring obesity risk variants (130). 
Relevant FTO SNPs were shown to be associated with IRX3 expres-
sion in the cerebellum of human brain samples. In IRX3- deficient mice, 
there is an increased sympathetic tone and activation of brown adipose 
tissue that seem to entrain the observed reduced energy expenditure and 
lower adiposity, a finding that has been confirmed by others in samples 
of patients and mice (131). More research is warranted before we reach 
a complete understanding of the mechanisms by which the FTO- risk 
alleles modulate the susceptibility to obesity.

Obesity- relevant DNA variants could also impact the biology of the 
predisposition to obesity via microRNAs and epigenetic events. These 
topics will not be fully reviewed here, but suffice it to say that there is 
growing evidence that both could contribute to the obesity risk profile. 
For example, it has been suggested that some obesity SNPs could result 
in DNA base changes altering microRNA binding to target sites (132) 
and that selected microRNAs were obesity biomarkers (133,134). A 
growing number of studies focused on the epigenetics of obesity have 
appeared in recent years (135). It is still too early to draw a conclusion 
on the true contribution of epigenetic signatures on the risk of obesity 
and on the potential modulation of epigenetic events of relevance to 
obesity by diet, physical activity level, smoking, alcohol intake, and 
other behaviors. However, the suggestion that BMI is associated with 
widespread changes in DNA methylation patterns (up to 187 genetic 
loci impacted) is of importance, as is the conclusion that alterations in 
DNA methylation profile are the consequence rather than the cause of 
obesity (136). Variation in the DNA methylome profile between mem-
bers of pairs of identical twins discordant for BMI offers an opportunity 
to identify epigenetic signatures participating in the etiology of obe-
sity (137). Equally important is the observation that older pairs of MZ 
twins exhibit more differences in methylation and histone acetylation 
content than young pairs of MZ twins (138). Advances in the genetic 
and epigenetic transcriptional regulation of energy homeostasis have 
highlighted the importance of the cross talk between them and their 
potential to illuminate further the etiology of obesity (139).

One relevant question is whether the advances in the genomics of obe-
sity that have occurred over the last decade or so translate into insights 
into the biology of obesity that are concordant with the progress made 
over the last 70 years in classical laboratory research on the physiol-
ogy, metabolism, and behavior of obesity. This question was addressed 
recently through a variety of approaches (140). The findings of three 
GWAS (96,141,142) were used as the basis for the derivation of a set of 
110 unique SNPs significant at the genome- wide level, as well as 2,000 
obesity SNPs significant at a lower threshold, that were subsequently 
interrogated for underlying genes, pathways, expression quantitative 
trait loci, tissue- specific networks, noncoding versus coding variants, 
epigenomic implications, and matching with relevant gene- knockout 
mouse models. The emerging biology was then compared with the 
panel of determinants of obesity arising from decades of experimental 
and clinical research as defined by 53 traits contributing to the etiology 
of obesity (140). Convergence of the evidence between both research 
tracks was observed for CNS processes, lipid metabolism, oxidative 
phosphorylation, as well as hormones, neuropeptides, and their recep-
tors. Cis- expression quantitative loci (eQTL; association between an 
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allele at a locus and a gene expression trait) surveys found that, in about 
50% of cases, obesity alleles affected gene expression of closest posi-
tional genes. Extensive overlap was observed between obesity SNPs 
and transcription binding sites, enhancers, and promoter sites, espe-
cially enhancer sites in brain regions. However, the evidence accumu-
lated in physiological and behavioral research diverged from the GWAS 
findings and related inferences on the role of skeletal muscle metabo-
lism, energy partitioning, and energy expenditure (140). It is entirely 
possible that the evidence gap between the two research tracks will be 
closed as the number of obesity SNPs expands.

Genomic research has generated thousands of DNA variants that 
define the biological and behavioral architecture of the risk of obe-
sity. Fortunately, the large number of obesity loci is converging on a 
finite set of genes, pathways, and systems, as well as gene- regulatory 
elements. As the number of obesity SNPs and other variants expands 
and becomes more or less fixed, the focus should shift to a more com-
plete delineation of the integrative biology defining the predisposition 
to common forms of obesity. The advances brought about by unbiased 
genome- wide exploration of sequence variants associated with obesity 
have been spectacular. They have dramatically changed our understand-
ing of what constitutes the genomic architecture and molecular basis of 
the numerous paths by which people could be predisposed to obesity. 
It has also taught us that the risk of obesity results from the confluence 
of vulnerabilities across multiple genomic and epigenomic sites, genes, 
pathways, and tissues (139). Although an individual genomic barcode is 
unique, the obesity predisposition barcode overlaps considerably among 
individuals, as suggested by the contribution of common risk alleles 
(143). Although much progress has been made, no clinical screening 
algorithms, to our knowledge, have yet attained the predictive power 
needed, with sufficient levels of specificity and sensitivity, to be rec-
ommended for practical implementation. We expect that the number of 
GWAS- generated signals for the predisposition to obesity will quickly 
expand and reach its useful limit. This would set the stage for major 
efforts aimed at deciphering the underlying biology and the complex 
mechanisms involved. It is a daunting, but not unsurmountable, task.

Genomic variants and adipose tissue distribution
As reviewed previously in this review, indicators of subcutaneous fat 
distribution, visceral fat, hepatic fat content, and other fat deposition 
sites are characterized by a genetic component of about 30% to 55% 
based on data adjusted for age, sex, and markers of adiposity or weight 
status. Thus, there are genetic elements influencing fat topography over 
and above the genetic drivers of total adiposity level. Cases of mono-
genic lipodystrophies offer insights into the genomic factors contribut-
ing to body- fat distribution regulation. For instance, inherited defects 
in 1- acylglycerol- 3- phosphate O- acyltransferase 2 (AGPAT2); BSCL2 
lipid droplet biogenesis associated, seipin (BSCL2); caveolin 1 (CAV1); 
and caveolae- associated protein 1 (CAVIN1) have been identified in 
congenital generalized lipodystrophies, whereas mutations in AKT ser-
ine/threonine kinase 2 (AKT2), lamin A/C (LMNA), perilipin 1 (PLIN1), 
and peroxisome proliferator- activated receptor γ (PPARG) have been 
found in familial partial lipodystrophies (43). Other genes that have 
been implicated include cell death-inducing DFFA-like effector C 
(CIDEC), zinc metallopeptidase STE24 (ZMPSTE24), and proteasome 
20S subunit β 8 (PSMB8).

Adipose tissue distribution. Three major reports have dealt with the 
waist girth to hip girth ratio (WHR) adjusted for BMI. An initial GWAS 
effort was based on 32 studies comprising more than 77,000 participants, 

with the replication of 16 loci attempted in a panel of 29 new studies 
totaling 113,636 individuals (144). Fourteen loci were identified at the 
genome- wide significance level for their associations with the relative 
fat distribution between the upper and lower body segments (ADAM 
metallopeptidase with thrombospondin type 1 motif 9 [ADAMTS9]; 
cytoplasmic polyadenylation element binding protein 4 [CPEB4]; dynamin 
3- phosphatidylinositol glycan anchor biosynthesis class C [DNM3- 
PIGC]; growth factor receptor bound protein 14 [GRB14]; homeobox 
C13 [HOXC13]; inositol 1,4,5- trisphosphate receptor type 2- sarcospan 
[ITPR2- SSPN]; lymphocyte antigen 86 [LY86]; lysophospholipase- like 
1 [LYPLAL1]; nuclear factor, erythroid 2-like 3 [NFE2L3]; nischarin- 
stabilin 1 [NISCH- STAB1]; R- spondin 3 [RSPO3]; T- box transcription 
factor 15- tryptophanyl tRNA synthetase 2, mitochondrial [TBX15- 
WARS2]; vascular endothelial growth factor A [VEGFA]; and zinc and 
ring finger 3- kringle containing transmembrane protein 1 [ZNRF3- 
KREMEN1]). Seven of these loci had a stronger effect on WHR in women 
than in men. These WHR loci did not overlap with the common obesity 
loci, suggesting that they influence fat distribution as opposed to the 
total amount of adiposity (145). Subsequently, meta- analyses of GWAS 
data encompassing 245,549 individuals from the GIANT Consortium 
identified 49 loci associated with WHR adjusted for BMI, with 19 of these 
loci exhibiting a stronger effect in women and 1 locus with a stronger 
effect in men (146). Finally, a new meta- analysis of GWAS for WHR 
adjusted for BMI was performed in 694,649 individuals (147). There were 
463 significant associations covering 346 loci, with 105 signals exhibiting 
sex dimorphism in the association pattern. The increasing number of 
significant SNPs is reminiscent of what has been reported on the genomic 
architecture of height and BMI. The 5% of individuals carrying the most 
WHR- increasing alleles were 60% more likely than the bottom 5% to 
have a WHR above the cutoff for metabolic syndrome (147).

Protein- coding variants contribute to variability in fat distribution. This 
was demonstrated in a study of 228,985 predicted- coding and splice 
variants in 334,369 individuals from five major ancestries in the discov-
ery phase and in 132,177 persons of European descent in the validation 
phase for WHR adjusted for BMI (148). A total of 56 significant coding 
variants were identified, 43 of which were common variants. Notably, 
25 of these variants were also associated with BMI, implying that 31 
of them were specific to adipose tissue topography. On average, the 13 
less- frequent variants had effect sizes three times greater than those of 
common variants. Of the 56 variants, 19 exhibited sex- specific effects, 
16 of which had stronger associations with WHR in women. Among 
the genes identified as potential fat deposition profile genes, the fol-
lowing were highlighted: RAPGEF3; fibroblast growth factor recep-
tor 2 (FGFR2); R3H domain containing like (R3HDML); H1.6 linker 
histone, cluster member (HIST1H1T); pecanex 3 (PCNXL3); activin A 
receptor type 1C (ACVR1C); aspartyl- tRNA synthetase 2, mitochondrial 
(DARS2); matrix metallopeptidase 14 (MMP14); dual serine/threonine 
and tyrosine protein kinase (DSTYK); angiopoietin- like 4 (ANGPTL4); 
UDP- glucose glycoprotein glucosyltransferase 2 (UGGT2); R- spondin 
3- KIAA0408 (RSPO3- KIAA0408), ras responsive element binding pro-
tein 1 (RREB1); diacylglycerol lipase β (DAGLB); MLX- interacting 
protein like (MLXIPL); coiled- coil domain containing 92 (CCDC92); 
leucine rich repeat- containing 36 (LRRC36); and ubiquinol- cytochrome 
c reductase complex assembly factor 1 (UQCC1).

In a separate study, sex- specific loci and adiposity loci were reported 
for the profile of fat distribution relative to total body fat (149). A 
GWAS analysis was undertaken on more than 360,000 participants of 
the UK Biobank for the proportion of body fat to the arms, legs, and 
trunk (relative to total body fat) estimated from segmental bioelectrical 
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impedance. Of 98 independent associations observed with fat distribu-
tion indicators, 37 exhibited stronger effects in females.

VAT depot. One depot of particular interest is abdominal VAT. A 
number of genome- wide association reports on VAT have been published 
over the last decade (150- 152). Considering the substantial correlation 
between VAT and BMI or total adiposity (42), only data for VAT adjusted 
for these covariates are summarized. Computed tomography was used to 
assess VAT in 5,560 women and 4,997 men, and VAT was adjusted for 
BMI (150). rs1659258 near threonine synthase- like 2 (THNSL2) was 
significantly associated with VAT in women but not in men. The same 
genomic marker was found to also be associated with waist circumference 
in women, but not in men, of the GIANT Consortium. Another study 
confirmed the THNSL2 association with VAT in women and provided 
suggestive evidence for additional candidates, namely BBS syndrome 
9 (BBS9) and CYCS pseudogene 30 (CYCSP30) (151). A recent study 
dealt with the colocalization of GWAS and eQTL signals for a number 
of traits, including VAT, in up to 18,332 participants (152). Ubiquitin- 
conjugating enzyme E2 E2 (UBE2E2) was found to be associated with 
the VAT- to- subcutaneous fat ratio, suggesting a contribution to the 
propensity to accumulate fat in the visceral cavity. Functional studies 
in primary mouse adipose progenitor revealed that an UBE2E2 loss of 
function impairs adipocyte differentiation.

Ectopic fat depots. The genetics of ectopic fat deposition are also 
of considerable interest. In the study based on colocalization of GWAS 
and eQTL signals cited previously in this review, six ectopic fat depots, 
assessed by imaging, were considered (152). Genetic correlations among 
these traits were moderate, suggesting that there are common genetic 
drivers of ectopic fat deposition, as well as depot- specific determinants. 
Of particular interest are the findings about pericardial fat, with three 
loci (endosulfine α [ENSA], tribbles pseudokinase 2 [TRIB2], and EBF 
transcription factor 1 [EBF1]) associated with ectopic deposition around 
the heart but not with total adiposity or subcutaneous fat distribution. 
A GWAS analysis was also undertaken for liver fat based on bilirubin 
levels and liver biopsies in 2,300 individuals (153). A SNP at the UDP 
glucuronosyltransferase family 1 member A complex locus (UGT1A) 
was associated with total bilirubin levels, two SNPs at suppressor of 
cytokine signaling 2 (SOCS2) and receptor activity modifying protein 
3 (RAMP3) loci were related to low- grade liver fat accumulation, 
and three SNPs in patatin- like phospholipase domain containing 3 
(PNPLA3) and one in SURP and G- patch domain containing 1 (SUGP1) 
were associated with hepatic fat level. SOCS2 and lisophosphatidic acid 
G protein coupled receptor 2 (LAPR2) were differentially expressed 
between fatty and normal liver.

Genomics and the biology of adipose tissue distribution. There 
are known differences among various human fat depots (154). 
Subcutaneous fat of the abdominal area shows a higher lipid turnover 
than the gluteofemoral fat depot. The half- life of abdominal fat tissue 
triglycerides reaches about 12 months but is 50% longer in the femoral 
depot (155). Abdominal fat accumulation is characterized mainly by 
increased fat cell size, whereas the lower body fat shows a higher 
capacity for recruitment of new adipocytes. Differences between upper 
and lower adipose tissue are not limited to morphology, as there are 
interdepot differences in apoptosis, inflammatory markers, adipokine 
secretion, lipolysis, and lipogenesis to name but a few (156).

GWAS of WHR adjusted for BMI have suggested that the genomic 
signals were enriched for adipocyte regulatory elements involv-
ing pathways related to adipogenesis, angiogenesis, adiponectin 

metabolism, regulation of transcription, and insulin resistance 
(146,148). Moreover, GWAS signals are often stronger in women 
compared with men (148,149). In the largest genome- wide screening 
for SNPs related to adipose tissue distribution to date, which identi-
fied 98 significant associations, the signals pertained to genes related 
to reproductive tissues, musculoskeletal tissues, chondrocytes, mes-
enchymal stem cells, and fibroblasts. Bioinformatics explorations 
suggested that a gynoid profile of fat distribution is driven by gonadal 
hormones on musculoskeletal and adipose tissue mesenchymal pro-
genitors. In women, several genes relate to interactions between cells 
and the extracellular matrix (149). Gene expression studies of 96 fat 
distribution genes assessed in abdominal subcutaneous adipose tis-
sue in women concluded that the profile of fat distribution in humans 
is largely governed by the morphology and function of adipocytes 
(157). In contrast to what has been reported for BMI, there is no 
indication that genomic variants in genes involved in CNS regulation 
are associated with the profile of fat distribution (149).

Figure 7 provides a simplified synopsis of tissues and pathways arising 
from the bioinformatics exploration of the biology underlying the sta-
tistical evidence from GWAS reports. The top panel is related to BMI, 
adiposity, and risk of obesity, as discussed previously in this review. 
The lower panel focuses on fat distribution, visceral fat, and ectopic fat 
traits, including hepatic fat content. Even though there is some degree 
of commonality between both sets of traits, there are clear differences 
regarding the biology driving excess adiposity versus fat topography.

Gene expression profiling of upper and lower body adipose tissue depots 
have highlighted marked differences in transcript abundance of devel-
opmental genes, including short stature homeobox 2 (SHOX2), iroquois 
homeobox 2 (IRX2), T- box transcription factor 5 (TBX5), HOXC13, T- box 
transcription factor 15 (TBX15), homeobox B5 (HOXB5), HOX tran-
script antisense RNA (HOTAIR), and several microRNAs (154). When 
the gene profiling was based on whole- blood RNA abundance, gene- set 
enrichment analyses revealed that the ATP- binding cassette transport-
ers (ABC transporters), apoptosis, Janus Kinase-  signal transducer and 
activator of transcription proteins signaling pathway (Jak- STAT sig-
naling pathway), and p53 signaling pathway were significant for WHR 
adjusted for BMI, whereas ABC transporters, p53 signaling pathway, and 
ubiquitin- mediated proteolysis reached significance for VAT adjusted for 
BMI (158). An exploration of the transcriptomic profile of adipose tissue 
derived from 15 anatomical sites from five postmortem donors revealed 
that there are depot- specific gene expression profiles predicted to impact 
metabolism, inflammation, immune signaling, extracellular matrix, coag-
ulation, thrombosis, beiging of adipose tissue, and apoptosis (159).

Genomics and response to weight loss 
interventions
As reviewed earlier, proof- of- concept data on gene- behavior inter-
actions with body weight or fat distribution changes have been gen-
erated from standardized and fully monitored studies of MZ twins 
exposed to positive or negative energy balance protocols (60- 62). 
Identifying the genomic drivers of these interactions in larger stud-
ies has proven to be challenging in part because they are typically 
based on behavioral changes examined under free living conditions 
in which individuals exhibit variable levels of compliance with inter-
vention protocols, but also because the weight changes are generally 
small. Several studies have reported that genomic risk scores based 
on common obesity SNPs were not useful predictors of weight loss 
caused by behavioral interventions (160- 163). These reports were 
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based on relatively large sample sizes, but the weight loss was mar-
ginal, which is not ideal for uncovering small effect size genomic 
determinants of experimental weight loss. However, a few genes with 
allelic variants have been shown to be individually associated with 
variability in behaviorally induced weight loss, including neurome-
din B (NMB) (164), LIM homeobox transcription factor 1 β (LMX1B) 
(160), mitochondrial translational initiation factor 3 (MTIF3) (163), 
ATP- binding cassette subfamily B member 11 (ABCB11), and 
TNF- receptor superfamily member 11a (TNFRSF11A) (165). In 
the POUNDS Lost Study, 19 loci were examined for their associa-
tions with weight loss induced by dietary interventions over 2 years. 
Individuals were randomized to one of four diets characterized by 
variable macronutrient compositions, all aiming at a reduction of 700 
kcal per day from habitual caloric intake estimated from metabolic 
rate measurement and an activity factor (166). Among 19 loci tested, 
only 1 SNP (rs11185098) at the AMY1- AMY2 locus was associated 
with weight loss at 6, 12, and 24 months independent of the diet.

Weight loss induced by bariatric surgery could potentially pro-
vide a stronger setting to identify genomic variants contributing to 

variability in weight loss, as the latter is much more substantial. 
Based on 1,443 individuals in the Swedish Obese Subjects bariat-
ric arm, FTO rs16945088 was associated with maximal weight loss 
reached, on average, 2 years following surgery (167). No SNPs at 10 
loci were related to maximal weight loss or weight loss at 6 years fol-
lowing surgery. A GWAS analysis of weight loss response to bariatric 
surgery was undertaken on low versus high weight losers (168). In 
a first stage, 111 SNPs were different between the two groups, and 
17 SNPs were retained in the replication phase. These SNPs clus-
tered around biologically relevant loci, such as fibrocystin (PKHD1), 
5- hydroxytryptamine receptor 1A (HTR1A), neuromedin B receptor 
(NMBR), and IGF1R. In patients with a BMI > 50, the weight loss at 2 
years following surgery was comparable in 30 patients who had clin-
ically significant mutations in MC4R, POMC, or PCSK1 compared 
with the weight loss achieved in 827 patients lacking these mutations 
(169). In a study of 865 patients followed for a mean of 4 years, the 
inclusion of a polygenic risk score based on 186 obesity SNPs to a 
weight loss prediction model based on age, sex, initial BMI, and sur-
gery modality improved the prediction marginally but significantly 
and reduced the false- negative rate from 20% to 10% (170). Genetic 

Figure 7 Overview of tissues and pathways contributing to individual differences in total adiposity versus adipose 
tissue distribution. The height of the bars in each panel reflects the trends from the bioinformatics exploration of 
the SNPs and positional genes identified in multiple GWAS. There are clear differences between the BMI, adiposity, 
and risk of obesity panel versus the fat distribution, visceral adipose tissue, and ectopic fat traits panel. AT, adipose 
tissue; GWAS, genome- wide association studies; SNP, single- nucleotide polymorphism.
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risk scores were tested in 577 patients following bariatric surgery for 
their associations with the excess BMI loss (171). The excess BMI 
loss reached 81% in the high tertile versus 74% in the low tertile of 
genetic risk scores, suggesting that patients genetically predisposed 
to a low BMI experienced marginally less weight loss with bariatric 
surgery.

Finally, there is an abundant body of literature on gene- nutrition and 
gene– physical activity interactions on BMI, adiposity or risk of obe-
sity, and their changes over time. Although these observational studies 
will not be reviewed here, they offer mixed results, with positive and 
negative findings commonly reported. An important lesson for this line 
of research is that, if such interactions impacting BMI or obesity risk 
exist, their effect sizes at relevant alleles are small. Detecting such inter-
actions in observational studies requires a large sample size and the 
proper analytical framework (172).

Lessons from the genetics of thinness
Understanding the genetics of thinness could potentially illuminate the 
genetics of obesity. The predisposition to be and remain lean over time 
is characterized by familial aggregation (173- 176). Lean parents are 
known to have lean and normal weight offspring who become, more 
frequently, lean or normal weight adults compared with offspring from 
parents with obesity (57,177). The familial risk ratio (λ coefficient), 
defined as the risk of being thin (percentile < 10 of BMI distribution) 
when a relative is thin divided by the population prevalence of thinness, 
reached three in several large population samples of siblings, which is 
about the same ratio as that of class I obesity (173). Compared with 
regular siblings or DZ twins, the ratio for pairs of MZ twins was of the 
order of five in a large sample of twins, suggesting a substantial genetic 
component to thinness. Importantly, lean mass, assessed by a variety 
of techniques, is characterized by a significant heritability level of the 
order of 30% to 60% (25,178- 180).

Several studies have focused on the identification of loci and alleles 
that are associated with leanness. Here, we do not refer to loci associ-
ated with conditions such as anorexia nervosa, but rather to thinness 
or leanness in healthy individuals. For instance, nine SNPs at three 
loci (C- terminal binding protein 2 [CTBP2], cyclin E1 [CCNE1], 
and calcium responsive transcription factor/neurobeachin like-1 
[CARF/NBEAL1]) have been shown to be related to anorexia ner-
vosa (181), but these loci have not been implicated in healthy thin 
individuals thus far. Likewise, a duplication of an approximately 
600 kb region on chromosome 16 (16:29.5- 30.1) is associated with 
low body weight in children and adults who tend to exhibit develop-
mental disabilities or psychiatric disorders (182). Although there are 
mutations in MC4R known to cause early- onset and severe obesity, 
some other variants at the same locus are related to lower BMI and 
risk of obesity. For instance, the V103I polymorphism reduces the 
risk of obesity by about 20% to 30% based on several meta- analyses, 
whereas the I251L variant reduces the risk level by about 50% (183). 
In a comprehensive study on gain- of- function MC4R variants, 11 
such mutations were identified (184). Among the latter, four variants 
exhibited preferential β- arrestin recruitment and enhanced signaling 
via the MAPK pathway. Among more than 27,000 UK Biobank indi-
viduals, 1 in 16 carried one of these gain- of- function alleles, and 1 
in about 1,100 was homozygote for such an allele. Both heterozy-
gotes and homozygotes had a lower BMI and reduced risk of obe-
sity. In a GWAS exploration of genomic differences between thin 
individuals and individuals with obesity combined with observations 

in large cohorts, several loci were associated with thinness, includ-
ing PKHD1, FAM150B, and PRDM6/CEP120 (185). Recently, a 
GWAS analysis was performed on healthy thin Estonian individ-
uals (N = 881, BMI < 18), Estonian individuals with severe obesity 
(N = 555, BMI > 95th percentile), and age-  and sex- matched controls 
(N = 3,173) (186). Five loci were associated with thinness: interactor 
of little elongation complex ELL subunit 1/mediator complex subunit 
10 (ICE1/MED10), AP activator protein 1/transmembrane p24 traf-
ficking protein 10 (FOS/TMED10), DEP domain containing MTOR 
interacting protein (DEPTOR), anaplastic lymphoma kinase (ALK), 
and a long noncoding RNA (AC013652.1). Functional studies of 
ALK were pursued in drosophila and knockout mice. ALK is a mem-
ber of the insulin receptor family highly expressed in the hypothal-
amus, and its genetic deletion in mice conferred protection against 
obesity. Mice with the ALK genetic deletion displayed increased 
energy expenditure, elevated sympathetic tone, and higher adipose 
tissue lipolysis. This study provides evidence that ALK inhibition 
may promote thinness.

Conclusion
A central message from the global body of obesity genetics research is 
that people do not all have the same predisposition to gaining weight 
and developing obesity. The genetic component of BMI in a population 
comprising the whole range of BMI values accounts for about 40% to 
50% of its variance adjusted for age and sex. However, the heritability of 
BMI and adiposity traits is lower among individuals with normal weight 
(30%- 35%) but higher in the subpopulation of individuals with obesity 
and severe obesity (60%- 80%). The appreciation that the heritability 
level varies across classes of BMI represents an important advance that 
may go a long way toward explaining some of the variability observed 
among genetic epidemiology studies. Overfeeding and negative energy 
balance experiments conducted with pairs of identical twins support the 
conclusion that there is a genetic component to variability in body weight 
and adiposity, as reported by observational cross- sectional and longitu-
dinal genetic epidemiology studies. Very importantly, heritability is a 
population parameter that does not specify the level of obesity risk for a 
given person. Assortative mating for BMI is low across the whole range 
of BMI, but it can nonetheless increase the frequency of obesity alleles 
among parents with obesity and overweight over multiple generations.

After controlling for BMI or total adiposity, the profile of fat distribu-
tion is characterized by heritability estimates ranging from about 30% 
to 55% depending on the trait. VAT levels exhibit higher genetic vari-
ance (50%- 55%) than markers of subcutaneous fat topography or ecto-
pic fat deposition in liver and skeletal muscle (30%- 35%). Therefore, 
the size of any given fat depot is characterized by a moderate level of 
heritability once the data are adjusted for total adiposity.

There are obesity genes with large effect sizes that exhibit a recogniz-
able Mendelian transmission pattern. Thus far, defects in 15 genes have 
been identified in monogenic obesity, and they are typically character-
ized by endocrine disorders and hyperphagia, with most cases resulting 
from a deficiency in a gene of the leptin- melanocortin signaling path-
way. In addition, there are many conditions commonly referred to as 
syndromic obesity, in which excess weight is a secondary condition. 
Abnormal ciliary function is one of the most common features of these 
syndromic obesity cases. Globally, Mendelian and syndromic obesity 
represent perhaps as many as 10% of severe obesity cases around the 
world.
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Genomic research has generated thousands of DNA variants that define 
the genetic risk of obesity. When genome- wide explorations are based 
on large populations with a wide range of BMI values, approximately 
two- thirds of the BMI heritability result from the contribution of com-
mon DNA variants, whereas low- frequency and rare variants explain 
the remaining fraction of the heritability estimate (ranging from 40% 
to 50%). Most common BMI SNPs seem to have comparable effects 
among Asian, African, and White European individuals. Diminishing 
effect sizes are observed with the growing number of variants, with 
most BMI- increasing or - decreasing alleles contributing a few grams or 
less. An important finding is that obesity- promoting alleles exert min-
imal effects in lean and normal weight people but carry growing dele-
terious effects in individuals with a proneness to obesity, suggesting a 
higher penetrance in individuals with a proneness to obesity. However, 
it is not known if this higher penetrance precedes obesity or is caused 
by the obese state.

The progress resulting from the unbiased genome- wide exploration 
of sequence variants associated with obesity has been remarkable. 
Genomic research has generated thousands of DNA variants defin-
ing the biological and behavioral architecture of the risk of obesity, 
and these obesity loci converge on a finite set of tissues, regulatory 
sequences, genes, pathways, and systems. Such advances are making 
it possible to shift the focus more onto the integrative biology of the 
predisposition to obesity. They have taught us that the biological and 
behavioral predisposition to obesity is shared by most people with obe-
sity, as evidenced by the large number of common alleles that contribute 
to the genetic vulnerability. We have also learned that the predisposition 
to obesity seldom arises from a single locus but, rather, is caused by 
convergence of vulnerabilities entrained by multiple genomic and epig-
enomic sites and their impact on gene expression ultimately affecting 
pathways, tissues, and functions. An important line of research is based 
on the recognition that there are family lines in which obesity is non-
existent, with a strong indication that there is a genetic component to 
this apparent protection. Some studies have reported on loci and alleles 
associated with leanness or thinness in otherwise healthy individuals. 
This is a promising area of research that has the potential to enhance 
our understanding of the genetic predisposition to obesity in various 
segments of the population.

No genetically based clinical screening algorithms have yet attained 
the predictive power needed to be recommended for practical imple-
mentation. As the number of GWAS markers of the predisposition to 
obesity expands and reaches its useful limit, more powerful screening 
tools are likely to emerge. Because of the larger effect sizes seen in obe-
sity alleles among people with obesity, there is growing optimism that 
valid genomic screening tools may eventually emerge, especially if the 
larger effect size of these alleles precedes the development of obesity. 
Even though the genomics of adipose tissue distribution and ectopic fat 
deposition has not reached the same level of development as obesity 
genomics, one can expect major advances in the coming years. Such 
advances could have implications for our understanding of some of the 
comorbidities of obesity.

Recent progress in our understanding of the genetic predisposition to 
obesity has confirmed that such a vulnerability ranges from very low 
to very high. The obesity genetic risk is determined by hundreds and 
thousands of DNA variants, a fact that makes genetically based obesity 
prevention and treatment a major challenge.O
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