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A B S T R A C T

It is becoming clearer how neurobiological mechanisms generate ‘liking’ and ‘wanting’ components of food
reward. Mesocorticolimbic mechanisms that enhance ‘liking’ include brain hedonic hotspots, which are spe-
cialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic
hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and
brainstem. In turn, a much larger mesocorticolimbic circuitry generates ‘wanting’ or incentive motivation to
obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic
homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate ‘liking’ and
‘wanting’ for food rewards. In some conditions such as drug addiction, ‘wanting’ is known to dramatically detach
from ‘liking’ for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization,
‘wanting’ selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable
states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect
an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive ‘wanting’ to eat. Future
findings on the neurobiological bases of ‘liking’ and ‘wanting’ can continue to improve understanding of both
normal food reward and causes of clinical eating disorders.

1. Introduction

Several decades of neuroscience studies have advanced under-
standing of how the brain generates behavior related to food reward,
motivation, and hunger. A fundamental question that remains is how
mesocorticolimbic and hypothalamic circuitry interact to produce re-
ward and the motivation to eat [1–7].

Work in our lab has focused on understanding how mesocortico-
limbic systems generate ‘wanting’ and ‘liking’ for food rewards, which
have turned out to be somewhat separable. Here we describe how
various brain mechanisms produce those two components of food re-
ward. ‘Wanting’ and ‘liking’ usually cohere together, but also can dis-
sociate in particular brain conditions to come apart. Findings have re-
vealed a distributed network of brain hedonic ‘hotspots’ that can
amplify hedonic impact or ‘liking’ for food rewards. These ‘liking’ me-
chanisms differ from larger mesocorticolimbic circuitry that generates
incentive salience or ‘wanting’ as motivation to eat. We focus on me-
chanisms for ‘liking’ and for ‘wanting’, and how these interact with
homeostatic hypothalamic circuitry in controlling eating and food re-
ward.

1.1. ‘Liking’ and ‘wanting’ as separate psychological processes

The words liking and wanting are often used interchangeably in
ordinary life when talking about rewards. For example, people may
want a palatable piece of chocolate because they like the flavor and
other sensations of consuming it. In ordinary use, liking means con-
scious pleasure and wanting means conscious desire, which typically
involve cognitive appraisals and declarative goals mediated by corti-
cally-weighted circuitry. But here we use quotations for ‘wanting’ and
‘liking in order to distinguish specific psychological processes from
ordinary use [8]. ‘Wanting’ here refers to the particular psychological
process of incentive salience, which can occur either consciously or
unconsciously, generated by brain mesolimbic circuitry in the form of
cue-triggered motivation. When rewards such as palatable foods and
their predictive cues are imbued with incentive salience by mesocorti-
colimbic circuitry, those cues and foods become attractive, and in
conscious form able to elicit subjective cravings. Whether conscious or
not, incentive salience triggered by cues can also generate behavioral
urges to seek and consume their associated rewards [9,10]. In the la-
boratory, ‘wanting’ is typically measured in humans by subjective
craving ratings, and in animals by how much food is pursued,
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consumed, or preferred over an alternative. ‘Liking’ refers to the he-
donic impact of pleasant rewards, which when surfaced into con-
sciousness can result subjective pleasure ratings in adult humans, but
which in animals and infant humans can be assessed via objective
measures of hedonic orofacial expressions elicited to taste in the af-
fective taste reactivity test [11–15]. ‘Liking’ and ‘wanting’ can become
separated in some conditions, as discussed below.

1.2. Measuring hedonic ‘liking’ with the taste reactivity test

The hedonic taste reactivity task measures affective orofacial reac-
tions to tastes of sucrose, quinine, water, etc., and the reactions to any
given taste can also be shifted by a variety of relevant physiological,
learning, and brain manipulation factors that alter its palatability.
Originally pioneered by Steiner for use in human infants [11], the test
was adapted for rodents by Grill and Norgren [13]. Orofacial responses
to taste are grouped into positive, neutral, and aversive categories.
Positive hedonic or ‘liking’ evaluations (Fig. 1a) are reflected in tongue
protrusions, paw licks, and lateral tongue protrusions, typically elicited

by tastes such as sucrose. By comparison, negative aversive or ‘disgust’
evaluations are reflected by gapes, forelimb, flails, headshakes, paw
treading and face washes, and typically elicited by bitter quinine. Many
of these orofacial expressions to taste are homologous, or evolutionarily
conserved, across mammalian species ranging from human infants to
non-human primates, rodents, and horses [14–16]. In our laboratory,
rodents are implanted with bilateral oral cannula, which allow taste
solutions to be directly infused into their mouths without them having
to engage in any appetitive activity to obtain them, and allowing ex-
perimenter control of stimulus intensity and duration. Independence
from appetitive or instrumental decisions to consume is important in
allowing taste reactivity to provide a relatively pure measure of taste-
elicited ‘liking’, without being altered by changes in ‘wanting’ that can
influence most other behavioral measures of food reward [15,17].

Tastants with very different sensory properties like sucrose, sac-
charin, salt, and fats can all evoke similar positive ‘liking’ responses,
indicating that hedonic reactions are palatability-specific rather than
sensory-specific [14,18–21]. Accordingly, taste reactivity behaviors are
not simple inflexible reflexes to a particular sensation, but rather reflect

Fig. 1. Brain systems of ‘wanting’ and ‘liking’. A) Positive hedonic expressions (‘liking’) elicited in response to palatable sucrose solutions (left). Negative aversive
orofacial expressions (‘disgust’) in response to bitter quinine solutions (right). Orofacial expressions to palatable and aversive solutions are homologous across various
mammalian species that include human infants, nonhuman primates, rodents, and horses. B) Palatable foods and their predictive cues activate mesocorticolimbic
reward systems. Sagittal view of a rat brain depicting brain systems of ‘wanting’ and ‘liking’. ‘Wanting’ is generated by mesolimbic dopamine systems originating
from the midbrain that project to various limbic structures (pictured in green) to generate incentive salience. ‘Liking’ is mediated by hedonic hotspots (pictured in
red) where opioid, orexin, endocannabinoid, and optogenetic manipulations enhance positive orofacial expressions to sucrose taste. By comparison, the same
manipulations within the hedonic coldspots (pictured in blue) oppositely suppress ‘liking’ reactions to sucrose solutions.
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a hedonic evaluation that also depends on the internal state of the or-
ganism, including physiological appetite and satiety states, neurobio-
logical states, as well as learned associations carried from previous
experiences with the taste. Physiological states like hunger and satiety
can shift subjective ratings of palatability for a particular taste in hu-
mans, in a phenomenon known as alliesthesia [22–24]. In rodents too,
caloric hunger magnifies hedonic ‘liking’ reactions to palatable sweet
taste, whereas satiety conversely reduces ‘liking’ [25,26]. Similarly, salt
appetite modulates the hedonic impact of the intense saltiness taste of
concentrated NaCl. For example, hypertonic concentrations of salt are
normally aversive, in the sense that rats mostly display ‘disgust’ reac-
tions when a seawater concentration of NaCl is placed into their
mouths. However, when a hormonal state of sodium deficiency or salt
depletion is induced, orofacial reactivity to the same intensely salty
taste shifts to mostly positive ‘liking’ [20,27–31]. Conversely, modula-
tion by learned associations can be induced by pairing a novel ‘liked’
sweet taste of saccharin as a Pavlovian conditioned stimulus (CS+)
with an injection of lithium chloride, which induces malaise, as an
unconditioned stimulus (UCS), to produce a conditioned taste aversion
(CTA) so that subsequent exposures to saccharin taste instead elicit
negative gapes and related ‘disgust’ reactions [32–37].

1.3. Hedonic hotspots: brain mechanisms of ‘liking’

Our laboratory has studied brain generators of taste ‘liking’ by
combining central neural manipulations of hedonic circuitry with the
taste reactivity measure of ‘liking’ versus ‘disgust’. In brief, pharmaco-
logical microinjections, excitotoxin lesions, optogenetic brain stimula-
tion or inhibitions, etc. are used to systematically turn on or turn off
particular neural systems in various brain locations during the taste
reactivity test. This is coupled with an analysis of local Fos protein
expression that allows us to more directly determine the spread of
neuronal changes induced by a manipulation that alters ‘liking’, to
identify localization of function, and map subregional localization of
hedonic mechanisms within a brain structure. These studies have re-
vealed a distributed network of limbic hotspots or small sites within
subregions of cortical and subcortical structures in the rat that are
capable of amplifying the hedonic impact (Fig. 1b) of sucrose taste
[19,38–40]. Brain hedonic hotspots appear to be restricted to particular
subregions of limbic structures such as rostrodorsal quadrant of medial
shell of nucleus accumbens (NAc), caudolateral half of ventral pallidum
(VP), a rostromedial portion orbitofrontal cortex (OFC), a far posterior
zone of insula cortex (IC), and the parabrachial nucleus of the brain-
stem pons (PBN). Brain hedonic hotspots that generate ‘liking’ are
embedded within larger mesocorticolimbic circuitry (spanning several
entire structures) that is capable of generating incentive salience
‘wanting’, underlying the close interconnection between ‘liking’ and
‘wanting’ functions in reward [38,41–48]. In the following sections we
discuss roles of these hedonic hotspots and mesocorticolimbic motiva-
tion circuitry in food reward, describe recent findings, and consider
their potential roles in normal appetite and in clinical eating disorders
and obesity.

2. Hindbrain structures compute early hedonic evaluations

Rudimentary hedonic processing of tastes begins to occur in the
brainstem early in pathway of ascending gustatory signals [11,49–52].
For example, brainstem (4th-ventricle) microinjections of a benzodia-
zepine drug that promotes GABA signaling enhanced positive ‘liking’
reactions to sweet taste, as did microinjections limited to the para-
brachial nucleus of the pons, revealing that site as a brainstem hedonic
hotspot [53,54]. Brainstem capacity for early hedonic-related proces-
sing was also revealed by classic studies of taste reactions in decere-
brate rats and in anencephalic infants, both of which lack a functioning
forebrain, yet are able to adequately respond to sucrose taste with
positive affective reactions, and to quinine with aversive reactions

[11,50]. Similarly, decerebrate rats show increases in positive ‘liking’
reactions to intra-oral sucrose after systemic administration of a ben-
zodiazepine drug [55]. For humans and other primates, the causal role
of PBN in food hedonics has sometimes been questioned [56,57] on the
basis that in primates, gustatory neuroanatomical projections may as-
cend directly from the hindbrain nucleus of the solitary tract to fore-
brain thalamus and limbic structures, rather than making an obligatory
intermediary relay in PBN as in rodents [58,59]. However, very little
data actually exists yet on PBN roles in food reward functions in pri-
mates, including humans.

A crucial need for forebrain hierarchical contributions to normal
‘liking’ exists even in rats, evident from observations that many features
of normal physiological and associative modulation of ‘liking’ reactions
that occur in normal rats are missing in decerebrate rats. For example,
decerebrate rats that are transected above the midbrain cannot learn or
retain behavioral conditioned taste aversions to a nausea-paired sweet
flavor that normally would switch ‘liking’ to ‘disgust’ reactions, sug-
gesting that higher order affective processing involving experience and
learning requires forebrain control and cannot be fully mediated by the
brainstem on its own [32,35,37,50]. Caloric hunger similarly is re-
ported to fail to enhance positive hedonic reactions to sweet tastes in
decerebrate rats [60] unlike in normal rats [25,61], and inducing a
hormonal salt appetite state fails to not enhance positive orofacial re-
actions to the taste of salt [62] again unlike in normal rats [20,27–31].
Those decerebrate failures suggest that the brainstem by itself cannot
integrate physiological state or learned associations with tastes to
modulate alliesthesia changes in hedonic orofacial reactions, even
though some rudimentary processing of such modulating inputs has
been reported in brainstem based on electrophysiological measures of
neural activity [63–67].

3. The nucleus accumbens medial shell- hotspot for hedonic
enhancement

Several decades of research have implicated the nucleus accumbens
(NAc) as especially important in food motivation, and the NAc also
plays important roles in controlling ‘liking’ reactions. Relevant to
‘wanting’, opioid, dopamine, and GABA/glutamate drug microinjec-
tions in the nucleus accumbens, especially in medial shell, can robustly
enhance motivation to pursue and eat palatable foods [19,68–82].
Importantly however, the nucleus accumbens is a heterogenous struc-
ture with multiple anatomical subregions [83–89] that differentially
mediate ‘liking’ and ‘wanting’, at least in response to particular ma-
nipulations [19,70,71,75,88]. Beyond the anatomical components of
core and shell, there also are important subregional hedonic speciali-
zations within the shell, such as the hedonic hotspot within the ros-
trodorsal quadrant of medial shell. The rostrodorsal quadrant of NAc
medial shell was first identified as an important hedonic hotspot
(Fig. 1b) for ‘liking’ enhancement by Peciña and Berridge [19]. That
hedonic mapping study used microinjections of the mu-opioid receptor
agonist (DAMGO) to show that, only in the 1 mm3 rostrodorsal sub-
region of medial shell did mu opioid stimulation enhance ‘liking’ re-
actions to sucrose taste, even though opioid stimulation anywhere
throughout the entire NAc shell generated robust ‘wanting’ to eat re-
flected in increased food intake. Opioid stimulations at NAc shell sites
other than the rostrodorsal hotspot completely failed to enhance
sweetness ‘liking’ reactions at all, even decreasing sucrose ‘liking’ at a
hedonic ‘coldspot’ site in caudal shell, despite still increasing ‘wanting’
to eat [19]. That and subsequent mapping studies revealed a clear NAc
subregional dissociation between amplification of ‘liking’, which is
limited to the rostral medial shell hotspot, versus of ‘wanting’, which
can be generated by opioid and some other neurochemical manipula-
tions throughout the entire medial shell as well as NAc core [19,68].
Further illustrating the unique hedonic features of this NAc hotspot,
delta opioid and even kappa opioid agonists can enhance sucrose
‘liking’ similarly to mu opioid stimulations when microinjected within
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the 1 mm3 hotspot in rostrodorsal shell, although kappa opioid stimu-
lation is known to produce negative aversive effects at many other brain
sites [70].

Beyond opioid stimulation, orexin and endocannabinoid micro-
injections within the NAc rostrodorsal shell hotspot also can enhance
sucrose ‘liking’ reactions (endocannabinoid enhancements might pos-
sibly also extend to caudodorsal shell) [90,91]. Endocannabinoids bind
to presynaptic receptors on axonal terminals of NAc neurons, and in-
fluence the release of other postsynaptic neurotransmitters [92]. The
ability for endocannabinoids in the NAc hotspot to enhance sucrose
‘liking’ appears to require local endogenous opioid mediation [93]. For
example, if opioid-blocking naloxone is mixed in the same micro-
injection into NAc hotspot that contains the endocannabinoid ananda-
mide, the simultaneous opioid blockade prevents the endocannabinoid
stimulation from enhancing ‘liking’ reactions to sucrose at all. These
findings seem in accordance with research showing that opioid and
cannabinoid receptors often co-localize on the same neurons to form
heterodimers, and that the two neurochemical signals can functionally
interact together to influence motivation for food and drug rewards
[94–96].

While opioid, endocannabinoid, orexin, and a few other neuro-
transmitters act in the NAc hotspot to enhance
‘liking’[38,75,91,93,97–99], mesolimbic dopamine is notably missing
from the list of hedonic neurochemical signals. Even in the NAc hotspot
of rostrodorsal shell, synaptic dopamine stimulations, such as by am-
phetamine microinjection or genetic knockdown of the dopamine
transporter that boosts dopamine levels in NAc synapses, completely
fail to enhance ‘liking’ at all (although potently stimulating cue-trig-
gered ‘wanting’ for sweet reward)[100,101]. Conversely, removing NAc
dopamine signals via permanent 6-OHDA lesions or through pharma-
cological blockade can suppress ‘wanting’ during consuming and in-
strumental responding tasks [102–113], but fails to impair ‘liking’ re-
actions [107,114,115].

3.1. Desire versus dread from the nucleus accumbens shell

Another reflection of rostrocaudal differentiation of affective va-
lence functions within the medial shell of NAc is an anatomical gradient
of oppositely-valanced appetitive ‘desire’ vs fearful ‘dread’ motivations,
revealed by localized microinjections that alter amino acid signaling in
inhibitory ways along the anterior to posterior anatomical axis of NAc
(Fig. 2a) [88]. For example, these opposite motivations can be pro-
duced by microinjections of either the glutamate AMPA antagonist
DNQX, which block excitatory glutamate signals, or the GABAa agonist
muscimol, which inhibit neuronal activity by opening Cl- ion gates.
Microinjections of either drug at sites in rostral shell generate appetitive
increases in food intake and can establish conditioned place preference
[71,80,116–118]. By comparison, at sites in caudal shell the same
pharmacological microinjections can promote active forms of nega-
tively-valenced fearful behaviors such as distress vocalizations or es-
cape attempts and bites when touched, or induce conditioned place
avoidance, and elicit spontaneous defensive treading-burying (an anti-
predator reaction), while often simultaneously reducing appetitive food
intake [75,88,119–121]. Intermediate sites between rostral and caudal
poles of the NAc shell can produce a mixture of appetitive behavior and
fearful behaviors (Fig. 2).

Importantly, the valence tuning of rostral vs caudal sites of medial
shell is not static, or determined by anatomical position alone, but in-
stead also can be altered to some extent by shifting the emotional
ambience of the testing environment [116,119,120]. For example, rats
that receive DNQX microinjections in a calm dark and quiet environ-
ment resembling their home cage, which rats prefer over standard la-
boratory conditions, show enhanced appetitive generation at more
widespread sites that extend throughout most of the NAc shell, in-
cluding caudal portions that otherwise generated fear. Conversely,
DNQX microinjections in a more stressfully loud and bright

environment shift many NAc shell sites from generating appetitive be-
havior into instead generating predominantly fearful behaviors
[119,121].

Precisely how do DNQX and muscimol actions in NAc shell elicit
such intense motivations? A prominent hypothesis of NAc function has
been that neuronal inhibitions in NAc medium spiny neurons generate
reward motivation [122–131]. By this hypothesis, local NAc neuronal
inhibitions suppress axonal release of GABA by output projections of
NAc medium spiny neurons onto downstream structures including
ventral tegmental area (VTA), lateral hypothalamus (LH), and VP,
which consequently disinhibits those target structures into relative ex-
citation [89,132–137]. This NAc inhibition hypothesis is supported by
electrophysiological reports that NAc neurons often are phasically in-
hibited by presentations of reward stimuli, including drugs or palatable
foods [124,127,128,138], (although c.f. [41,139-144]). Conversely,
aversive bitter tastes and their cues have been reported by some in-
vestigators to typically evoke excitatory increases in NAc neuronal
firing [128,138]. Similarly, learning a new aversive motivational value
for a previously positive reward may shift the electrophysiological re-
sponse of NAc neurons to tastes from inhibition to excitation. For ex-
ample, inducing a learned Pavlovian taste aversion to a normally ‘liked’
saccharin solution, by pairing it with nausea, was reported to shift
subsequent NAc neuronal responses to that taste from original inhibi-
tions when still rewarding to predominately excitations when ‘dis-
gusting’ [145]. Conversely, appetite states can induce alliesthesia to
raise the incentive value of relevant tastes. For example, physiological
sodium depletion that shifts affective reactions of intensely hypertonic
NaCl tastes from ‘disgust’ to positive ‘liking’, was reported to simulta-
neously switch the NAc neuronal response to saltiness from excitation
to inhibition [146].

By comparison, NAc output targets such as VP or VTA typically
encode reward stimuli with electrophysiological excitations, so that as a
taste becomes more positively ‘liked’, the greater the neuronal excita-
tion in the posterior VP hotspot [29,147].Therefore, one hypothesis to
explain how microinjections of DNQX or muscimol in NAc shell gen-
erate intense motivations is that they inhibit the activity of local NAc
neurons, shutting off axonal GABA release, and so disinhibit or activate
downstream VP, LH and VTA targets [126]. DNQX would merely re-
duce NAc activity relative to normal levels by blocking excitatory
glutamate inputs onto local neurons, whereas muscimol would act on
GABA-A receptors to directly open Cl- gates to more powerfully inhibit
NAc neurons.

The neural difference in degree of NAc inhibition can create some
categorical psychological consequences. Accordingly, DNQX micro-
injection in rostral shell increases food intake as a form of ‘wanting’ to
eat, but does not enhance ‘liking’, whereas muscimol in the rostral shell
hotspot increases both ‘wanting’ and ‘liking’ together [99]. Similarly,
DNQX in caudal shell only increases motivated ‘fear’ behaviors,
whereas muscimol in caudal shell both increases ‘fear’ motivation and
induces excessive ‘disgust’ affective reactions to sucrose. Consistent
with the idea that NAc inhibition releases projection targets into acti-
vation, such NAc drug microinjections increase neuronal activity re-
flected in Fos expression in downstream structures, including LH, VTA,
VP, and paraventricular thalamus (PVT) [116,148,149].

To test whether local neuronal inhibition is actually necessary for
DNQX microinjections in NAc shell to cause intense motivations,
Hannah Baumgartner, Shannon Cole, and Jeffrey Olney in our labora-
tory recently tested whether opposing DNQX-induced inhibitions in
NAc with optogenetic channelrhodopsin (ChR2) stimulation at the same
site would reverse the desire or dread motivations otherwise produced
by the DNQX microinjection [116]. They found that the answer was
yes: exciting NAc neurons at the same local site as a DNQX micro-
injection reversed the ability of the microinjected DNQX drug to induce
increases in appetitive eating behavior and food intake at rostral shell
sites, and similarly reversed the elicitation of defensive or fearful be-
havior at caudal sites [116]. Further, in support of the hypothesis that
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NAc neuronal inhibition may be sufficient by itself to generate an in-
tense motivation, Shannon Cole and Jeffrey Olney have also found
preliminary evidence that acute inhibition of local neurons in NAc shell,
such as by optogenetic inhibitory opsins, may directly elicit increases in
motivated behavior [150,151]. For example, rats who received in-
hibitory viruses targeted at rostral NAc shell sites showed laser-bound

increases in eating behavior. These pilot observations support the hy-
pothesis that neuronal inhibitions in NAc shell can be a sufficient cause
of increased motivation, as well as being a necessary part of the me-
chanism by which NAc DNQX microinjections elicit desire or dread
[116].

(caption on next page)
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3.2. Neurobiological mechanisms of hedonic hotspots

What neurobiological features of the hedonic hotspots may explain
their unique capacities for hedonic enhancement? For example, in rats
the NAc hedonic hotspot is a 1 mm3 quadrant of rostrodorsal medial
shell, and is the only NAc shell or core site where opioid, en-
docannabinoid, and orexin stimulations amplify ‘liking reactions to
sweet taste [70,75,97,99,152]. Neurobiological evidence suggests that
the rostrodorsal subregion of NAc medial shell that contains the hotspot
may also have unique neuroanatomical features that differ from other
subregions of medial shell [85,86]. For example, one anatomical con-
nectivity tracing study reported that the rostrodorsal subregion of NAc
medial shell receives inputs from a distinct subregion of infralimbic
cortex in rats, corresponding to Area 25 of the anterior cingulate cortex
in humans; those infralimbic inputs to the rostrodorsal hotspot differ
from the cortical inputs to other subregions of medial shell [85]. Si-
milarly, the NAc hotspot in rostrodorsal shell sends outputs to distinct
subregions of LH and VP that are different from the LH/VP output
targets of other NAc shell subregions [85]. Finally, the VP target in turn
sends its projections to a particular anterior thalamus subregion that
finally projects back to the original infralimbic/A25 cortical subregion,
forming a closed-circuit loop that runs through the NAc hotspot. In
other words, the NAc hedonic hotspot appears to belong to a distinct
cortical-striatal-pallidal-hypothalamic-thalamic-cortical circuit loop
that is segregated from other loops running through different sub-
regions of medial shell [85]. Another neuroanatomical study reported
that the rostrodorsal hotspot of NAc medial shell has additional distinct
features, such as dense projections to subregions of lateral hypotha-
lamus that other NAc subregions may not project to [86]. The rostral
hotspot of NAc medial shell also has distinct neurochemical features,
such as a higher incidence of parvalbumin neurons than in the caudal
coldspot of medial shell [153], and distinct neurochemical respon-
siveness to mu opioid stimulation [154]. By contrast, the caudal sub-
region of medial shell, which contains the hedonic coldspot where mu
opioid stimulation by DAMGO microinjection (as well as delta or kappa
opioid stimulations) oppositely suppresses ‘liking’ (although still in-
creasing ‘wanting’ to eat, at least for mu stimulation), instead has
transitional features shared with extended amygdala structures [86].
Which, if any, of these neurobiological features underlie the hotspot's
special ability to enhance ‘liking’ reactions, or rostrocaudal gradients in
affective functions of medial shell? The answer to that question is not
yet known, but such evidence at least shows that it has a number of
unique neuroanatomical and neurochemical features which could
eventually be part of that explanation.

4. Ventral pallidum hedonic hotspot

The ventral pallidum receives the densest output projections from
nucleus accumbens [132,133,155,156], and ventral pallidum is im-
portant in both reward and aversion [29,38,157–174]. The posterior
half of the ventral pallidum of rats contains another 0.8 mm3 hedonic
hotspot where microinjections of the mu-opioid agonist DAMGO more
than doubles hedonic ‘liking’ reactions to sucrose [38,98]. Similar to
NAc, though reversed in front to back valence polarity, the VP appears

organized along a bivalent anatomical gradient [38]. For example, local
opioid stimulation by DAMGO microinjection in the posterior (the same
subregion is also lateral and dorsal in VP) half of VP enhanced sucrose
‘liking’ reactions (and increased food intake), whereas the same opioid
stimulation in anterior (which is also medial and ventral) VP oppositely
suppressed positive ‘liking’ reactions (and suppressed food intake), re-
vealing a rostral VP hedonic coldspot. It may be related that a human
neuroimaging study found similar rostrocaudal bivalence, in that
anterior VP was reported to activate in response to disgusting images,
whereas posterior VP activated to images of palatable foods [170,175].
However, anterior VP still can participate in generating incentive mo-
tivation or ‘wanting’ for rewards. A different manipulation of anterior
VP, namely local GABA blockade induced via bicuculine antagonist
microinjections to disinhibit or excite anterior VP neurons, caused in-
creases in food intake [38]. Similarly, anterior VP has also been shown
by others to be important in motivation to pursue drug and foods re-
wards [166,169].

Within the hedonic hotspot of posterior VP, orexin microinjections
also have been found to enhance ‘liking’ reactions to sucrose, just as
opioid microinjections do [90]. Furthermore, recent pilot studies using
optogenetic stimulation suggest that directly exciting VP neurons via
channelrhodopsin in the posterior hotspot similarly enhances positive
‘liking’ expressions, as well as increasing ‘wanting’ to eat [176–178]. By
comparison, optogenetic stimulation of LH neurons adjacent to VP,
increased only food intake but not hedonic reactions to sucrose, in-
dicating it is possible to increase ‘wanting’ without increasing ‘liking’
[176–179]. Similarly implicating these subregional differences for VP
in reward, others have reported that frequency thresholds for electrical
self-stimulation in VP are lower in posterior subregions of VP than
anterior subregions supporting a special role for caudal ventral pal-
lidum in some reward-related functions [180]. However, as mentioned,
anterior VP neurons also contribute to motivation to seek reward, at
least in some neurobiological modes and in some situations
[38,98,166,169,172]. The functional flexibility and multiple roles of VP
subregions is a topic that deserves further investigation.

4.1. Hotspots recruit each other to unanimously enhance ‘liking’ as an
integrated hedonic circuit

Some evidence suggests that stimulating one hedonic hotspot (e.g.,
in either VP, NAc, OFC, or insula) recruits neural activation of other
hotspots in different structures, activating the entire array of distributed
hotspots as a unitary hedonic circuit to enhance ‘liking’ reactions
[1,17,39,98,176,178]. For example, opioid stimulation of the NAc
hotspot via NAc DAMGO microinjection recruits distant Fos activation
in the VP hotspot when enhancing ‘liking’ reactions to sucrose taste
[98], and similarly amplifies electrophysiological firing patterns of
neurons in the VP hotspot that encode hedonic ‘liking’ for sucrose
[147]. Conversely, local opioid stimulation in the VP hotspot re-
ciprocally recruits Fos activation in the NAc hotspot when enhancing
sucrose ‘liking’ [98]. Similarly, in the cortical hedonic hotspots in OFC
or insula, DAMGO or orexin microinjections that enhance ‘liking recruit
distant Fos increases in subcortical VP and NAc hotspots [39]. Fur-
thermore, evidence suggests that mutual recruitment among hotspots

Fig. 2. ‘Liking’, ‘wanting’, desire, and dread in the nucleus accumbens medal shell. A) Top shows amino acid disruptions (via glutamate AMPA receptor
antagonist DNQX or GABAA agonist muscimol) in the medial shell of the nucleus accumbens reveal a rostral to caudal organization of intense motivations.
Manipulations into anterior sites produce voracious feeding (shown in green). The same microinjections at posterior sites generate fearful motivations (depicted in
red) such as distress calls, bites, escape attempts, and defensive treading. DNQX or muscimol in mid NAc medial shell produce a mix of appetitive and aversive
motivations. B) Bottom-top panel shows dissociations between ‘liking’ and ‘wanting’ in the nucleus accumbens medial shell following microinjections of mu-opioid
agonists (DAMGO), delta-opioid agonists (DPDPE), and kappa-opioid agonists (U50488H). Similar patterns of hedonic enhancements were found after mu, delta, and
kappa opioid agonists. While microinjections into anterior dorsal (in red) sites magnified ‘liking’ expressions to sucrose solutions, posterior manipulations oppositely
suppress ‘liking’ expressions (in blue). Bottom panels shows the dissociable effects of mu, delta, and kappa manipulations in the nucleus accumbens medial shell on
free-feeding. Mu-opioid agonists generated feeding throughout the entire medial shell. By comparison, delta opioids generate feeding within anterior sites over-
lapping with the hedonic hotspots. Finally, kappa opioid stimulation did not reliably generate feeding at any site despite generating intense ‘liking’ expressions in the
rostrodorsal quadrant. Adapted from Castro & Berridge (2014).
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may be causally necessary for any hotspot stimulation to enhance
‘liking’ reactions. Blocking opioid receptors with a naloxone micro-
injection in one hotspot (either NAc or VP) while simultaneously sti-
mulating the other hotspot, prevents any hedonic enhancement that
otherwise would be generated by the DAMGO microinjection in the
other hotspot [98]. All in all, these studies suggest that the hedonic
hotspots act together as a unified functional circuit for hedonic en-
hancement, and that disruption of that full circuit recruitment can
prevent opioid hotspot stimulation from enhancing affective responses
to palatable tastes.

However, while hedonic hotspots recruit each other into action, the
exact neuroanatomical connections by which they do so remains as yet
unknown. Anatomical tracing evidence suggests that the hotspots do
not directly project to each other [85,86]. For example, although NAc
and VP as whole structures are heavily interconnected, the NAc sub-
region of rostrodorsal medial shell that contains the hedonic hotspot
primarily projects to the anterior VP that contains the hedonic coldspot
and not to the posterior VP hotspot [85,86]. Conversely, the posterior
VP hotspot sends reciprocal efferents primarily to the lateral core of the
NAc, not to the rostral medial shell that contains the NAc hotspot
[85,86,136,155]. In addition, while NAc projects to PBN, which may be
a brainstem hedonic hotspot [40], NAc-PBN projections primarily arise
from the ventral quadrant of the medial shell, not the rostrodorsal shell
quadrant that contains the NAc hedonic hotspot [136]. Similarly, the
subregion of prefrontal cortex that projects directly to the NAc shell
hotspot is the infralimbic region of ACC (equivalent to Area 25 in hu-
mans), and not the anteromedial OFC that contains its cortical hedonic
hotspot [85]. A lack of point to point projections among hedonic hot-
spots indicates that intermediary anatomical relay sites must exist to
functionally connect hedonic hotspots together, but the precise identity
of these relay sites and connections is not yet known.

4.2. Ventral pallidum hotspot: crucial to normal ‘liking’

Although all hedonic hotspots can produce gains in hedonic ‘liking’
reactions when appropriately stimulated, damage to most hotspots does
not produce loss of normal ‘liking’ reactions. The posterior VP hotspot is
the only known brain region where excitotoxic or electrolytic neuron-
destroying lesions can result in loss of normal ‘liking’ reactions and
replacement by excessive ‘disgust’ reactions even to sweet taste (Fig. 3).
These effects can persist for weeks, underlining the special importance
of VP hotspot to normal hedonic function [168,181]. For example, after
VP lesions, normally ‘liked’ sucrose taste instead elicits ‘disgust’ reac-
tions such as gapes, headshakes, paw treading, etc., as though the sweet
taste had become bitter or otherwise strongly unpalatable [168,181].

Classic studies in the 1960s using large electrolytic lesions originally
attributed lesion-induced ‘disgust’ to damage to the LH [182,183].
However, subsequent more precise mapping using smaller excitotoxin
lesions indicated that the crucial ‘disgust-induction’ lesion site was not
in LH, but was actually the hedonic hotspot of posterior VP [168]. The
large electrolytic lesions to LH of earlier studies typically also damaged
posterior VP in addition to the LH, which may account for the negative
affective reactions reported by early LH studies [1]. In other words,
only damage to the VP hotspot produces dramatic loss of hedonic
function. Both LH lesions and VP lesions can cause loss of ‘wanting’ to
eat or drink, producing severe adipsia and aphagia, so that lesioned rats
require intragastric feeding and hydration to be kept alive. But if they
receive that intense nursing for days to weeks, rats slowly begin to
independently feed again on soft palatable food, eventually progressing
to normal eating and then drinking behavior, although some subtle
ingestive functions still remain impaired [183–186].

Beyond ‘disgust’ induction by posterior VP lesions, pharmacological
inhibition of posterior VP hotspot neurons, such as by microinjections
of GABA agonists, also can induce temporary excessive ‘disgust’ to
sweetness that lasts at least for hours [181,187]. Excessive ‘disgust’
induced by pharmacological muscimol/baclofen microinjections in the

VP hotspot, as well as by posterior VP lesions, has been interpreted as a
‘release phenomenon’ [181,187], a century-old concept from the early
neurologist Hughlings-Jackson for explaining how a neuronal dys-
function produces an active behavioral disorder [188]. That is, the
excessive disgust probably results from negative-affect generating cir-
cuitry in other brain structures outside the VP, which is released or
disinhibited by damage to the positively-valenced hedonic hotspot of
posterior VP [181,187].

Our lab is currently testing whether direct optogenetic inhibition of
VP neurons can similarly cause loss of hedonic function. Our recent
pilot results, using the modified inhibitory channelrhodopsin (SwiChR
++) opsin, which opens negative Cl- ion gates in the neuronal mem-
brane, allowing influx of Cl- ions to make the neuron more negative and
less able to fire (similar to an IPSP) [189], suggest that optogenetic
inhibition of neurons in the posterior VP hotspot may suppress positive
‘liking’ reactions elicited by sucrose taste, and possibly also increase
negative ‘disgust’ reactions to an already aversive quinine solution
(Morales & Berridge, 2019 and personal observations). Optogenetic
induction of neuronal inhibition may be less intense than that induced
by pharmacological GABAergic microinjections, producing weaker be-
havioral consequences, but results so far suggest that optogenetic in-
hibition may be enough to suppress positive hedonic valence or in-
crease negative valence under some conditions.

4.3. Potential neurobiological basis of hedonic differences between posterior
VP vs anterior VP: ‘liking’ hotspot vs coldspot

What accounts for differences in reward functions between anterior
and posterior subregions of VP? One answer may lie in distinct neu-
robiological features of their neurons, as the ventral pallidum contains
multiple types of neurons which can differ in their electrophysiological
signatures [191,192], and in their neurochemical identities across
anterior-posterior subregions [173,193–196]. For example, electro-
physiologically, VP is thought to contain either Type I or Type II cells.
The anterior VP contains a mixture of Type I and Type II cells, whereas
posterior VP hotspot contains predominantly Type II cells [192]. Type I
cells are easily excitable, tonically active, and larger than Type II cells.
Type II neurons by contrast exhibit low basal firing rates, require higher
thresholds for stimulation, and share some morphological features with
NAc MSNs.

Neurochemically, approximately ~74% of VP neurons are
GABAergic, ~11% are cholinergic, and ~15% are glutamatergic, in
mostly separate and non-overlapping populations [173,195,197]. VP
glutamate neurons are concentrated in anterior VP [173,197], near the
site of the hedonic coldspot [38], whereas posterior VP is more heavily
GABAergic. A number of studies have suggested that VP GABAergic
neurons contribute primarily to reward-related motivation, whereas VP
glutamatergic neurons contribute to aversive motivation, by oppositely
modulating the activity of their overlapping downstream targets such as
LH, VTA, and lateral habenula (LHb) [162,171,173,197–201].

Are VP GABAergic neurons important in amplifying ‘liking’ and
‘wanting’ for food rewards? To better answer this question, pilot studies
in our lab have recently begun to explore this issue via selective op-
togenetic stimulation of GABA neurons in VP using a Cre-dependent
promoter to express ChR2 in the ventral pallidum of GAD-Cre rats
[202]. Our preliminary experiments indicate that optogenetic stimula-
tion of VP GABA neurons generates robust feeding, biases and narrows
preference for a laser-paired sucrose reward, and promotes self-stimu-
lation [178,190]. Most interestingly, optogenetic stimulation of pos-
terior VP GABA neurons additionally appears to enhance ‘liking’ reac-
tions to sucrose taste, as well as ‘wanting’ to eat [190]. By contrast,
inhibiting the same posterior VP GABA neurons with a Cl- ion channel
opsin (iC++) may suppress ‘liking’ reactions [190]. Thus, our pre-
liminary results so far support the hypothesis that it is GABAergic
neurons in the posterior VP hotspot that are responsible for both gain of
function and loss of function changes in hedonic ‘liking’ reactions.
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Additionally, GABA neurons throughout the entire VP may more gen-
erally participate in motivation ‘wanting’ for rewards
[38,171,173,181].

5. Cortical hedonic hotspots – insula and orbitofrontal cortex

Beyond subcortical hedonic hotspots, two hotspots in cortex were
recently discovered by our lab: one in the anteromedial orbitofrontal
cortex, and another in the far-posterior insula cortex of rats. Both of
these cortical hedonic hotspots similarly caused hedonic gains of
function in sucrose ‘liking’ reactions in response to drug microinjections
that deliver mu opioid stimulation or orexin stimulation to local neu-
rons [39]. By contrast, the same opioid/orexin microinjections in other
limbic cortex sites outside these hotspots, even in other regions of OFC
or insula, fail to enhance sucrose ‘liking’ (and some sites suppress
‘liking’), even if they stimulate ‘wanting’ to eat [39].

The finding that hedonic hotspots exist in the cortex was surprising
in one sense, because lesions in cortical areas do not reliably reduce
hedonic reactions in either rats or humans [203–208]. That is, damage
to the orbitofrontal cortex or insula does not necessarily cause loss of
‘liking’ reactions to foods or other pleasant events. However, gain of
hedonic function is different from loss of hedonic function, and in a
neural hierarchy a superior structure such as cortex might plausibly
cause hedonic gains by activating subcortical hedonic circuitry, without
causing hedonic losses when damaged, if the subcortical circuitry is
capable on its own of generating basic hedonic reactions. In any case,
human neuroimaging data and animal electrophysiological studies have
also reported that orbitofrontal cortex and insula at least encode

hedonic values of food and other rewards [3,209–215].
In keeping with the hierarchical triggering and cross-hotspot re-

cruitment notions, DAMGO or orexin into the OFC or insula hotspot
that enhanced ‘liking’ caused distant increases in neural activation
measured by Fos expression in the hedonic hotspots in NAc and VP.
This supports the hypothesis that ‘liking’ enhancements caused by
neurochemical stimulation of a particular hotspot are mediated by re-
cruiting the entire hedonic circuitry across the brain to activate all
hotspots together [1,39,98,147]. The two cortical hedonic hotspots
were also shown to bookend a long ‘hedonic coldspot’ strip between
them where orexin and DAMGO microinjections oppositely suppressed
sucrose hedonic reactions (i.e., stretching from lateral orbitofrontal
cortex through insula). Orexin or opioid microinjections in the coldspot
strip produced a pattern of Fos changes across the brain quite different
from cortical hotspot microinjections, suggesting activation of a sepa-
rate anti-‘liking’ neural circuitry that dampens positive hedonic reac-
tions [39]. It is interesting that an overlapping subregion of posterior
insula (posterior to gustatory sensory cortex) also appears crucial to
taste aversion learning [216].Increases in motivational ‘wanting’ to eat,
measured as increased consumption of chocolate M&M candies were
also produced by all OFC hotspot microinjections and some insula
hotspot microinjections, and were also produced by a number of non-
hedonic sites in infralimbic cortex, prelimbic cortex, or anterior cin-
gulate cortex (ACC), and even by some sites in the intervening hedonic
coldspot strip of posterior-lateral OFC and anterior insula [39].

Current pilot studies in our lab are investigating whether optoge-
netic ChR2 excitation of neurons in these cortical OFC and insula he-
donic hotspots can drive ‘liking’ enhancements, similarly to opioid or

Fig. 3. The posterior ventral pallidum is necessary for normal hedonic function. Microinjections of mu-opioid and orexin agonists (left) into the pallidum
revealed a rostral to caudal organization of hedonic function. Stimulation of the posterior ventral pallidum ‘hotspot’ causally amplifies sucrose orofacial expressions
(‘liking’) while the same manipulations in the caudal hedonic ‘coldspot’ suppress them. Temporary inactivation of posterior VP via GABA agonists generates a
reversal of hedonic function so that normally ‘liked’ sucrose solutions elicit aversive ‘disgust’ reactions. Adapted from Smith & Berridge (2005) and Ho & Berridge
(2014).
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orexin neurochemical stimulations of those same OFC or insula sub-
regions. Our preliminary data suggest that optogenetic excitation of
neurons in either the anteromedial OFC hotspot or in the far-posterior
insula hotspot may indeed double ‘liking’ reactions to sucrose taste
[190,217]. However, more mapping may be needed given that a recent
report suggested that optogenetic stimulation in anterior insula of mice
promotes positive affective reactions whereas posterior insula stimu-
lation evoked ‘disgust’ reactions [218,219]. We also note that some
others have reported optogenetic laser self-stimulation of glutamate
neurons in insula regions, or of insula-to-amygdala projections
[218,220], although others report avoidance of laser-stimulation at
some insula sites [218,220,221], suggesting the insula picture in par-
ticular may need further clarification.

6. Distributed brain mechanisms of ‘wanting’: nucleus accumbens
core, neostriatum, amygdala, lateral hypothalamus and beyond

The mesocorticolimbic brain system that generates incentive sal-
ience or ‘wanting’ is anatomically larger than the hedonic hotspot
network, including entire structures of NAc, central nucleus of amyg-
dala and parts of neostriatum, etc. Neurochemically it includes dopa-
mine and glutamate, as well as opioid orexin, and endocannabinoid
transmitters so that its functionally more robust than the ‘liking’ net-
work (Fig. 1b). [222–231]. This robust network can generate intense
incentive motivation and appetite, even without enhancing hedonic
‘liking’.

6.1. Nucleus accumbens core

Incentive motivation to eat can be amplified by manipulations such
as opioid-stimulating microinjections throughout the entire nucleus
accumbens, including both core and shell. Regarding simple (un-
conditioned) food intake, some studies have reported that various
manipulations in the core as well as shell can enhance free-feeding in
rodents, albeit many report less robust effects from the core compared
to shell [73,80,81,152,232–236]. However, both core and shell have
been shown to potently alter learned instrumental responding for pa-
latable rewards in rats [237–239], which may be due specifically to
enhanced cue-triggered ‘wanting’ or incentive salience as shown in an
elevated Pavlovian-instrumental transfer (PIT) paradigm after DAMGO
or amphetamine microinjections in NAc [239]. Interestingly, lesions to
the core, but not shell prevent reallocation of food-related responses in
a decision-making task where rats are given the option to lever press for
a preferred palatable sucrose reward vs. eating normal laboratory chow
that is freely available within the chamber [240].

Overall, the NAc medial shell is especially important for its role in
generating intense incentive motivation, whereas the core has been
reported to be preferentially activated by reward-predictive cues
[1,70,97,146,241–246]. For example, previously drug-associated cues
can trigger drug-seeking [247]. Conditioned instrumental responding
may be associated with Fos expression in D1 and D2 core medium spiny
neurons [143], and specific forms of PIT, which depend upon associa-
tion of cues with the learned identities of specific foods, are especially
reliant on NAc core [248]. Conversely, decreasing dopamine signaling
in the core can suppress sign-tracking behavior in rats [249,250].

6.2. The dorsal neostriatum

Parts of the neostriatum, sometimes called dorsal striatum, also
participates in generating incentive motivation. Human imaging studies
have long shown that food-related cravings are associated with acti-
vation of the dorsal striatum [251,252]. This human striatal response to
food has been reported to become blunted in those who frequently eat a
specific type of food. For example, people who frequently eat ice cream
may show suppressed dorsal striatal activation to a milkshake [253].
Similarly, rodent studies have shown that prolonged exposure to a high

sugar and fat diet resembling a western diet can alter glutamate, opioid,
and dopamine transmission in the dorsal striatum [254]. Lack of do-
pamine in the dorsal striatum is associated with severe aphagia that
ultimately results in death, further implicating neostriatum role in
feeding and appetite [255–257].

The dorsomedial part of the neostriatum (DMS) is known for a role
in goal-directed learning and motivation [258–265], but it may also
play a role in directly generating appetite. For example, microinjection
of mu-opioid stimulating DAMGO directly into the dorsomedial neos-
triatum causes rats to increase food intake [43]. Similarly, levels of the
endogenous opioid neurotransmitter enkephalin within dorsomedial
neostriatum surge spontaneously when rats begin to eat a palatable
food, consistent with an appetite-promoting mechanism [43]. Dors-
medial participation in generating motivation to eat is consistent with
evidence that opioid-stimulating microinjections throughout much of
the neostriatum can cause increases in food intake [43,68,73,77,266].
However, DAMGO microinjection in the dorsomedial neostriatum that
enhances ‘wanting’ to eat sweet food is not accompanied by any en-
hancement orofacial ‘liking’ reactions to sweetness, suggesting a spe-
cific incentive motivation but not hedonic contribution [43]. Finally,
selective inhibition in dorsomedial neostriatum of the dopamine D2
‘stop’ pathway, while preserving the D1 ‘go’ pathway, invigorates mo-
tivation to work for a palatable reward during a progressive ratio task
[267]. Overall, these results suggest that opioid and dopamine signals
in the dorsomedial neostriatum play an important role in modulating
incentive motivation to eat.

By comparison, the dorsolateral part of the neostriatum (DLS) has
traditionally been described for roles in habit formation
[262,268–272], model-free stimulus-response associations [273–277],
motor sequences and direct movement control [278–283]. However,
DLS also plays a role in motivation for reward. For example, optoge-
netic stimulation of the direct-path (D1 dopamine receptor expression)
and indirect (D2 receptor expressing) neostriatal neurons can promote
place-based self-stimulation and avoidance, respectively [284].

The DLS also helps generate incentive salience for learned food
cues, visible in an autoshaping or sign-tracking paradigm [42]. Micro-
injections of DAMGO or of amphetamine into the DLS can enhance
attraction to sucrose-related cues. In this situation, rats learn that the
insertion of a metal lever into the chamber (Pavlovian CS+) predicts a
free sucrose pellet (UCS) [42]. Typically, one group of rats, known as
sign-trackers (STs), attribute high incentive salience directly to the
predictive lever, and approach and nibble the CS+ lever [285–287].
Another group of rats, known as goal-trackers (GTs), instead are at-
tracted to the sucrose-pellet dish or goal, approaching and nibbling the
metal dish. When mu-opioid or dopamine signaling was enhanced in
the dorsolateral neostriatum by microinjection of DAMGO or amphe-
tamine, ‘pure’ ST rats that always go to the lever CS+ became even
more attracted towards their CS+ lever than before, suggesting in-
tensified incentive salience that is even more narrowly-focused on the
CS+ [42]. Similarly, GTs became selectively even more attracted to-
ward their dish, again suggesting intensified and motivation focused on
their preferred stimulus. In Pavlovian parlance, the dish is also a type of
Pavlovian CS+, but one that is contiguous to sucrose UCS in space and
time, whereas the lever is a predictive CS+ whose presentation is cor-
related with UCS delivery; both CS+ types are traditionally recognized
by Pavlovian learning theory.

Further evidence from the same study supported the conclusion that
these enhancements of conditioned responding were due to increased
motivational attraction to the respective CS+s, rather than to in-
tensified habits. For example, DLS microinjections of DAMGO also in-
creased sign-trackers willingness to learn and work on a new instru-
mental nosepoke task in order to earn presentations of their lever CS+
(i.e., increased instrumental conditioned reinforcement of an entirely
new behavioral response, showing magnified ‘wanting’ for the CS+ as a
feature of incentive salience) [42]. Similarly, sign-trackers flexibly
followed their lever to a new location in the chamber if it moved after
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DAMGO microinjections in DLS, rather than repeating the same habi-
tual response of going to the old location.

Amphetamine microinjections that promoted dopamine release in
dorsolateral neostriatum made ‘mixed sign-trackers’, which previously
mostly went to lever CS+ but sometimes made a ‘goal-tracking’ de-
fection toward the dish CS+, actually switch to become instead purer
goal-trackers, again replacing the more habitual response with a dif-
ferent one. That is, DLS dopamine stimulation appeared to enhance
motivated attraction to the UCS-proximal dish CS+ at the expense of
the predictive lever CS+’s attractiveness for those individuals [42].
Thus, the dorsolateral neostriatum may have important roles in both
amplifying incentive motivation and in selecting which competing cues
for food reward become most attractive.

A different view of the dorsal neostriatum's role in eating was re-
cently suggested by Ivan de Araujo, Mark Schatzker, and Dana Small
[288], but may possibly be reconciled with our own view expressed
above. De Araujo et al. argue that less reliant are the hedonic properties
of foods like flavor, taste, and aroma in their ability to generate ex-
cessive overeating [288]. They note that vagal sensory projections from
the viscera to the hindbrain sensory nucleus of the solitary tract carry
signals about caloric content arising from food digestion, and show
vagal signals may trigger dopamine release from substantia nigra axons
in the dorsal neostriatum [288]. Strikingly, direct optogenetic stimu-
lation of vagal-to-medulla projections supports laser self-stimulation,
which they suggest reveals a response-reinforcing signal [289]. Nu-
trient conditioning of flavor preferences similarly relies on intact do-
pamine signaling in the dorsal striatum [290,291]. The vagal-neos-
triatal dopamine reinforcement signal, De Araujo et al. suggest, does
not enhance food hedonic palatability but rather strengthens behavior
more directly, similar to traditional stimulus-response (S-R) habit
stamping-in theories. As de Araujo et al. put it “In other words, re-
inforcement and habit acquisition can occur seamlessly in the absence
of any consciousness-borne flavor appreciation.” (p. 153, [288]).

The hypothesis of de Araujo et al. that vagal nutrient signals act in
neostriatum without any “consciousness-borne flavor appreciation” is
consistent with our view that neostriatal dopamine fails to enhance
‘liking’. The hypothesis that vagal signals promote learned attraction to
foods is also consistent, as de Araujo et al. point out, with many earlier
demonstrations by Anthony Sclafani, Kevin Myers and colleagues that
intra-gastric calories are able to act as a UCS to establish a conditioned
preference for a paired CS flavor in rats, increasing ‘wanting’ to eat that
food whether or not it also increases ‘liking’ for the more ‘wanted’ CS
flavor [290,292–295]. For example, nutrient conditioning can enhance
‘wanting’ without enhancing ‘liking’ reactions for a bitter/sour CS+
flavor [295], although it can enhance both ‘wanting’ and ‘liking’ to-
gether if the CS+ flavor was initially sweet or palatable [294]. Thus,
enhanced ‘liking’ is a possible accompaniment but not an obligatory
component of nutrient conditioned taste preferences.

Based on all this, we would suggest a possible alternative inter-
pretation to S-R habit reinforcement for the role of vagal-evoked do-
pamine in neostriatum. That is, given that dopamine in dorsal neos-
triatum can enhance the incentive salience of specific food cues, as
described above [42], vagal-evoked dopamine release in dorsal neos-
triatum might similarly promote ‘wanting’ to eat evoked by particular
food cues associated with vagal stimulation. This would be an incentive
motivation mechanism, probably maximally triggered by particular
foods that are both caloric and palatable, rather than a behaviorist re-
sponse stamping-in mechanism, and would not be confined to habits
but could promote eating even if food seeking required novel responses
or if the food cues moved to new settings.

6.3. The amygdala

The focus of ‘wanting’ onto particular targets is a function in which
amygdala also plays an important role. The amygdala is composed of
multiple nuclei, including the basolateral nucleus of amygdala (BLA),

the medial nucleus of the amygdala (MeA), and the central nucleus of
amygdala (CeA) [296–303], and of these, the CeA is particularly im-
portant to generating intense incentive salience. The CeA has ‘striatal-
level’ status within a cortico-striatal-pallidal macrosystem organization
of forebrain structures (in which the BLA has cortical status, and the
bed nucleus of stria terminalis (BNST) holds ‘pallidal status’ within the
extended amygdala complex [297]). The striatal-level status of the CeA
may be relevant to its ability to amplify appetitive motivation. For
example, the CeA contains many GABAergic neurons that receive BLA
glutamate inputs and mesolimbic dopamine inputs (glutamate-dopa-
mine convergence similar to NAc and neostriatum), and project pri-
marily to BNST as a pallidal-type target [304].

Eating palatable food causes increases in Fos expression in the
central amygdala [305,306] and direct manipulations that alter opioid,
glutamate, GABA, and several peptides within CeA can potentiate un-
conditioned food intake [45,307–320]. Conversely, GABAergic in-
activation of the CeA or dopamine blockade in CeA suppresses food
intake [321,322]. Some recent optogenetic studies have similarly re-
ported that ChR2 activation of various CeA neuronal types amplifies
food intake and drinking of palatable sweet solutions [323–326].

The CeA may also play a special role in targeting enhanced
‘wanting’ on to particular learned cues for food rewards. For example,
in a sign-tracking/goal-tracking situation, CeA mu-opioid stimulation
by DAMGO microinjection selectively enhances the incentive salience
of the sucrose-predicting lever CS+ in sign-trackers, but selectively
enhances the incentive salience of the sucrose-contiguous dish CS+ in
goal-trackers. In both cases it enhances approach towards, and con-
summatory bites and nibbles to the individual's preferred metal lever or
dish cue [44,45,307]. That suggests the CeA can amplify incentive
motivation and focus ‘wanting’ specifically on an already preferred CS
+ stimulus [44]. Similarly, in a Pavlovian-to-instrumental transfer si-
tuation (PIT), CeA opioid stimulation specifically enhances cue-trig-
gered ‘wanting’ by increasing bouts of instrumental lever pressing for
sucrose reward when the CS+ is presented, and not in its absence
[307]. In addition to its role in food motivation and appetite, CeA
signaling has also been shown to be important for cue-induced moti-
vation for drug rewards [327–332]. Conversely, lesion studies suggest
that loss of CeA function impairs cue-induced ‘wanting’, suppressing
PIT, and other forms of motivation [333–336].

Recently, optogenetic CeA stimulations have been used to amplify
and control the direction of ‘wanting’ for a particular target, such as
sucrose, cocaine, or even a noxious shock-rod stimulus that delivers
electric shocks if touched [46,47,337]. The CeA role is powerful enough
to make a rat ‘want what hurts it’ when laser stimulation is paired with
voluntary encounters of the noxious shock rod, so that rats para-
doxically become compulsively attracted to the shock-rod and subject
themselves to shocks again and again [337]. This CeA-driven attraction
is mediated in part via recruiting activation of distributed mesocorti-
colimbic circuitry for incentive motivation [337].

Regarding food in particular, studies by Mike Robinson and Shelley
Warlow in our lab showed that pairing such CeA optogenetic stimula-
tion with a sucrose target could make the rat exclusively pursue that
laser-paired sucrose target while ignoring an equally good sucrose al-
ternative. CeA stimulation also amplified breakpoint incentive moti-
vation to obtain sucrose in a progressive ratio task [47]. Another study
by Robinson and colleagues showed that rats will withstand a painful
foot shock in order to gain access to the laser-paired sucrose, and pursue
it even when the alternative non-laser paired sucrose reward is 10 times
larger [338]. However, Robinson and Warlow found that CeA ChR2
stimulation did not appear to enhance orofacial ‘liking’ reactions for
sucrose, despite making rats ‘want’ sucrose more [47]. Pilot results in
our lab suggest that pairing optogenetic CeA ChR2 stimulation speci-
fically of CRF neurons in CeA with a particular sucrose target can si-
milarly make that target exclusively preferred over an alternative su-
crose option, and so mimic at least some of the CeA ChR2 effects
described above [339–341].
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Overall, CeA and its control over other mesocorticolimbic circuitry
may be involved in sharpening the focus of amplified ‘wanting’ onto
cues for a particular incentive target, like a high-caloric palatable food,
which could contribute to intense urges to indulge in those foods,
leading to overeating.

6.4. Lateral hypothalamus homeostatic interactions with mesocorticolimbic
circuitry for ‘liking’ and ‘wanting’

Understanding how ‘liking’, ‘wanting’, and hypothalamic circuitry
interact to promote appetite and motivation is an enduring quest.
Lateral hypothalamus (LH) may modulate the activity of mesocortico-
limbic circuitry, including hedonic hotspots, by integrating homeostatic
signals so that relevant hunger/satiety states can enhance or suppress

Fig. 4. Brain Systems for Appetite and Motivation. A) Top panel shows a sagittal view of a rat brain with a summary map of connections between hindbrain,
hypothalamic, and mesocorticolimbic sites that mediate ‘liking’, ‘wanting’, sensory signals, and appetite. Brain hedonic hotspots (shown in orange) and coldspots
(shown in light blue) in parabrachial nucleus, ventral pallidum, nucleus accumbens, orbitofrontal cortex, and insula do not share direct projections. Orexin signals
from the lateral hypothalamic modulate mesocorticolimbic activity by integrating circulating signals about hunger/satiety in order to enhance or suppress ‘liking’
and incentive motivation during various physiological states. Additional hypothalamic systems in the arcuate nucleus of the hypothalamus may interact with
mesolimbic circuitry so that their activity reflects the incentive value of food and food-related cues in the environment. Colors of arrows denote projection types. Data
is based from studies described in text. B) Bottom panel is a sagittal view of mesocorticolimbic systems that mediate ‘liking’ and ‘wanting’ in humans. Individuals with
eating disorders may have hyper-reactive mesolimbic dopamine systems that respond to information about food and their related cues in the environment. This
enhanced dopamine release may assign excessive incentive salience that results in overconsumption of palatable foods that is independent of how much those foods
are actually ‘liked’.
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motivated and hedonic behaviors to food rewards at appropriate times
[342]. But how might LH help regulate these processes? One obvious
potential mechanism is orexin (Fig. 4a), given that it is both a hunger-
related hypothalamic signal and an effective enhancer of ‘liking’ reac-
tions in limbic hedonic hotspots [1,39,90,97,148,343,344]. Orexin/
hypocretin is a neuropeptide exclusively synthesized in perifornical,
lateral, and dorsomedial nuclei of the hypothalamus [345,346], and
while implicated generally in arousal throughout the hypothalamus, a
subset of orexin neurons in a subregion of lateral hypothalamus are also
implicated in reward-related motivation [179,347–352]. LH orexin
neurons project widely throughout the brain, including to nucleus ac-
cumbens, ventral pallidum, ventral tegmentum, and limbic cortex re-
gions where the hedonic hotspots are located [83,155,349,353–358].
LH orexin is therefore an ideal candidate to help mediate alliesthesia
[342,359], the phenomenon in which physiological appetite states en-
hance hedonic ‘liking’ and palatability ratings of the tastes of relevant
foods [23,25,213,360]. Consistent with that hypothesis, direct micro-
injections of orexin-A into hedonic hotspots in VP, NAc, OFC, and insula
amplify ‘liking’ reactions to sucrose as effectively as microinjections of
mu opioid DAMGO into those sites [39,90,97].

Additional mechanisms for hypothalamic-limbic interactions in-
clude AgRP/NPY and POMC neurons in the arcuate nucleus (ARC) and
LH [361–364]. ARCAgRP and ARCPOMC neurons send robust projections
to LH and their release of AgRP and POMC peptides modulate activity
of LH neurons [363,364]. For most of the past 20 years, AgRP neurons
have been viewed as simple homeostatic ‘hunger’ neurons, and POMC
neurons viewed as ‘satiety’ neurons [365]. However, recent studies
indicate that AgRP activity rapidly decreases as soon as palatable food
is merely presented, or even when a cue predicting food is encountered,
before any actual food has been ingested. Conversely, POMC neuronal
activity can rapidly rise when triggered by these encounters or cues, in
advance of any physiological satiety [366–368]. One interpretation of
these rapid anticipatory changes is that AgRP and POMC neuronal ac-
tivity reflects an interaction between incentive and hedonic information
about available food, implying bidirectional or looping circuitry inter-
actions between mesocorticolimbic-reward and hypothalamic-homeo-
static systems [369]. That would be compatible with the increasing
recognition that, rather than serving as parallel systems that promote
appetite and feeding independently, hedonic and homeostatic systems
may be understood as heavily interconnected, which functionally in-
teract to control appetite and eating behavior.

7. Clinical implications of ‘liking’ versus ‘wanting’ dissociation:
incentive-sensitization and obesity

The above discussion of brain mechanisms for food ‘wanting’ versus
‘liking’ may carry potential implications for human obesity and eating
disorders. In the past decade, a number of obesity investigators have
applied the brain-based ‘wanting/liking’ distinction to suggest that in
some vulnerable individuals, ‘wanting’ for foods might dissociate and
exceed ‘liking’ to cause excessive cue-trigged ‘wants’ to overeat
[2,4,5,370–374]. The idea that some cases of extreme over-eating or
binge-eating disorders can reflect excessive ‘wanting’, without excessive
‘liking’ invokes the incentive-sensitization theory of addiction, which
was originally proposed for drug addiction but recently has been ex-
tended to behavioral addictions and to over-eating [375–377]. In-
centive-sensitization applied to eating disorders suggests that some
individuals may be especially vulnerable to developing neural sensiti-
zation of dopamine-related mesocorticolimbic systems of ‘wanting’, and
consequently assign the exaggerated incentive salience that results
specifically to palatable foods and the act of eating them. The result
would be excessive ‘wanting’ to eat (Fig. 4b), typically triggered by
palatable food cues or by vivid imagery about such foods, which could
become especially exacerbated in moments of stress or emotional
arousal that heighten mesolimbic reactivity. Evidence supporting this
incentive-sensitization interpretation of overeating comes particularly

from neuroimaging studies of obese or binge-eating individuals that
have reported a sensitization-type brain activation signature to food
cues that is remarkably similar to the signature of people who suffer
from drug addiction to drug cues [2,4,370,373].

A potential incentive-sensitization brain explanation for eating
disorders is also relevant to debates about the concept of food addiction
[370,372,373,378–389]. That is, a legitimate ‘food addiction’ might
exist to the degree that some over-eaters truly show incentive-sensiti-
zation signatures of brain activation to foods, in the sense that those
food-sensitized individuals may experience more intense cue-triggered
food cravings than other people do. The ideal brain signature for an
eating addiction in the sense of incentive-sensitization would be me-
socorticolimbic hyper-reactivity in nucleus accumbens or striatum,
ventral tegmentum, amygdala or limbic cortical regions in over-eaters
that is triggered by food cues. An incentive-sensitization signature
would be hyper-reactive in both of two ways: 1) more intense brain
activations triggered by food cues than by money or other reward cues
in the same over-eating individual, and 2) more intense brain activa-
tions triggered by food cues in sensitized over-eaters than triggered by
the same food cues in nonsensitized normal eaters.

Extreme incentive salience attributed to foods is in one sense a
natural phenomenon that nearly anyone could experience – at least,
under extreme conditions of prolonged starvation, but which most
people in the modern world fortunately never experience. For example,
during World War 2 a controlled Minnesota study of starvation was
carried out using conscientious objectors as volunteers of starvation to
better understand starvation consequences and treatments [390]. Gra-
dually the volunteers began to be gripped by intense food cravings as
they became extremely underweight: “Some of them (volunteers) ob-
sessively read cookbooks, staring at pictures of food with almost por-
nographic interest” [390]. Despite being highly motivated, a number of
volunteers could not resist succumbing to temptations to eat, and left
the study. Thus, anyone can feel strong urges to eat during extreme
physiological starvation that become nearly compulsive. What may be
different in sensitized over-eaters is that similarly intense incentive
salience is attributed to food cues, due to sensitized hyper-reactivity of
mesocorticolimbic ‘wanting’ systems in some vulnerable individuals,
even without ever being starved and despite developing obesity.

Some evidence for incentive sensitization in over-eating has come
from reports that obesity and binge eating disorder is associated with
heightened BOLD signals in ventral striatum, prefrontal cortex, and
OFC in response to visual cues of palatable foods compared to in-
dividuals without obesity [391–393]. Similarly, individuals with obe-
sity have been reported to have elevated brain responses in striatum,
amygdala and orbitofrontal cortex to images of high calorie foods
compared to foods low in calories or control images [394–401]. Using
PET, one study reported elevation in striatal dopamine release in binge-
eating individuals (compared to non-binge eating individuals) when
they were given oral methylphenidate, which may pharmacologically
prime mesolimbic dopamine reactivity, and their higher dopamine re-
sponse was positively correlated with binge eating scores [402].
Heightened brain activity to palatable foods also positively correlates
with self-reported subjective cravings or ‘wanting’ to eat [403], and
individuals with binge eating are reported to have greater EEG re-
activity in response to palatable chocolate pictures and increased
craving ratings compared to healthy controls [404]. Elevated brain
responses to food in individuals with obesity may also be associated
with poorer outcomes to behavioral weight loss treatments [405].
Evidence suggests that enhanced brain limbic activity is selective to
food rewards in over-eaters, as some studies have not observed in-
creased brain activity to monetary rewards in individuals with binge-
eating disorder [403,406]. Overall, these studies suggest that in-
dividuals with binge-eating disorder or obesity show incentive sensiti-
zation-like features in mesolimbic brain structures to food and food-
associated cues, which could produce more intense cue-triggered
‘wanting’ to eat, even if not be matched by more intense ‘liking’
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[2,4,5,370–374].
Most telling may be prospective or longitudinal tracking studies that

track individuals both before and after they develop obesity. For ex-
ample, one such study reported that young women showed altered
brain responses to learned food cues in ventral pallidum and neos-
triatum. Women who showed the greatest increase in ventral pallidum
BOLD signals and greatest decrease in neostriatal signals were at
greatest risk for developing excessive weight gain later in life [407].

Incentive-Sensitization contrasts to Reward Deficiency. It is worth
noting that the incentive-sensitization hypothesis for over-eating con-
trasts strongly with the reward deficiency hypothesis, which was pro-
minent for several decades in both obesity and drug addiction fields.
This reward deficiency idea postulated that obese individuals find foods
less rewarding than other individuals, and therefore eat more foods to
accumulate rewarding experiences and so make up their reward defi-
ciency. This reward deficiency hypothesis was based on reports that
striatal dopamine D2 receptors appear to be down-regulated in some
individuals with obesity, at least in the sense that they have reduced
labeled-raclopride binding (although reduced binding to vacant re-
ceptors may not be able to distinguish between fewer receptors versus
higher dopamine release and receptor occupancy). That reduced D2
binding is similar to potential D2 down-regulation in individuals with
drug addiction [408–414]; although some studies fail to find D2
binding reductions in people with obesity [415].

Early reward deficiency advocates often drew on the once-popular
idea that mesolimbic dopamine mediated ‘liking’ or food pleasure, in-
ferring that lower D2 binding therefore meant a deficiency of pleasure.
The reward deficiency hypothesis also assumed that individuals re-
spond to reductions in food pleasure by consuming more food to regain
a preferred pleasure level. That assumption views food pleasure re-
duction as similar to drug dilution, where individuals may consume a
greater quantity of a dilute drug (e.g. beer) than of a concentrated drug
(e.g. whiskey) to obtain the same alcohol dose. However, sensory in-
centives such as food obey very different empirical rules. For food re-
wards, making a food less ‘liked’, typically also makes it less ‘wanted’
less and therefore less consumed [9,416–418]. For example, many
parents might be able to attest that putting their children on a diet of
unpreferred broccoli, brussels sprouts, or spinach is unlikely to lead to
weight gain. Proponents of the reward deficiency hypothesis might
object to this example on grounds that reward deficiency is sometimes
posited to develop later in life, and only when eating palatable energy-
dense foods (e.g., sweet-fatty foods, salty-fatty foods, etc.). However,
making a palatable rich food less palatable is still unlikely to make an
individual eat more of it. In our view, there is no evidence for the re-
ward-deficiency assumption that individuals eat more as a food be-
comes less tasty. Rather, people and animals instead typically eat more
when the available foods are more ‘liked’ and consequently more
‘wanted’.

Neurobiological problems may also exist for the reward deficiency
hypothesis. Evidence from animal experiments where brain dopamine
levels are manipulated indicates that increases in food seeking and
consumption are more readily produced by increases of dopamine sig-
nals in the nucleus accumbens (such as after amphetamine micro-
injections in nucleus accumbens to promote dopamine release) than by
suppression of dopamine signals [239,419–421]. Conversely, suppres-
sing dopamine signals from the nucleus accumbens or neostriatum is
most often reported to reduce eating and food seeking in animal studies,
rather than cause overeating [422–424]. Similarly in people, inducing
suppression of dopamine signaling in ordinary volunteers may actually
cause them to eat less rather than to eat more [425]. As a caveat,
however, the brain has multiple anatomical dopamine systems, and
dopamine and norepinephrine signaling in the paraventricular nu-
cleusof medial hypothalamus can oppositely suppress food intake
[426,427]. Appetite-suppressing action of dopamine in the para-
ventricular nucleus of hypothalamus may explain why amphetamine-
type drugs can be dieting aids (i.e., by stimulating hypothalamic

dopamine and norepinephrine systems), and conversely why long-term
exposure to neuroleptic/anti-psychotic dopamine antagonist drugs can
sometimes produce weight gain [428–430].

But if reduction of accumbens/striatal dopamine signals does not
cause overeating via reward deficiency, then why are obese individuals
often reported to have reductions in striatal D2 receptor binding? An
alternative explanation for why D2 dopamine downregulation occurs in
many cases of obesity could be that D2 receptor downregulation is a
consequence of eating palatable foods and/or weight gain, rather than
being its cause. That is, encountering and eating rewarding foods may
engage relatively intense mesocorticolimbic signals, possibly involving
excessive or repeated dopamine release and related neurobiological
over-stimulations, which eventually cause a partially compensatory
down-regulation of D2 receptors just as do repeated exposures to ad-
dictive drugs.

Further, obesity is a form of extreme satiety that may induce related
long-term physiological alliesthesia signals (e.g., high leptin, etc.), as
negative-feedback signals that also attempt to dampen future meso-
corticolimbic activation to check excessive ‘wanting’ to eat. All these
may be viewed as partial compensatory responses tending to oppose the
temptation power of palatable food incentives and cues that activate
mesocorticolimbic dopamine systems, but which in many individuals
fail to fully compensate because they are only partial and because other
neuronal components of mesocorticolimbic incentive circuitry remain
hyper-reactive to food cues. As a result, those individuals may continue
to over-eat even in the face of reduced dopamine D2 receptors in nu-
cleus accumbens or striatum. Evidence for thinking that D2 receptor
downregulation is a consequence of continually eating palatable foods
and of obesity, rather than a cause of over-eating, is that D2 receptor
downregulation in nucleus accumbens and striatum can be induced in
normal rats by giving them several weeks of free access to an array of
palatably sweet and rich junk foods, on which some of them then be-
come obese [5]. That is, the rats’ D2 downregulation occurs as a con-
sequence of continually eating sweet and fatty junk food and of any
consequent obesity that develops over that prolonged period of time.
Human evidence that D2 downregulation is primarily a consequence of
obesity, and not the cause, is that the suppressed level of D2 dopamine
receptors in severely obese humans sometimes rises after they lose
weight following bariatric Roux-en-Y surgery, again as a consequence
of their change in eating habits and of weight loss induced by the
surgery [431,432].

In the end, future prospective human neuroimaging studies may
provide the best evidence to help decide between incentive-sensitiza-
tion and reward deficiency explanations of over-eating and obesity.
Tracking changes in brain function in the same individuals both before
they become obese and after obesity develops can provide important
evidence regarding underlying causal mechanisms. For example,
healthy weight adolescents who subsequently gain body fat over 2-or-3
years have been reported to show enhanced brain responses to food
cues even before they gained weight [433]. Similarly, healthy weight
adolescents who subsequently gain weight have been reported to have
higher initial brain responses in taste and reward coding cortical re-
gions like insula and OFC when consuming milkshakes, suggesting
limbic hyper-reactivity may be a pre-existing cause of later obesity.
However, after they gain weight their brain reactions to the actual taste
of milkshakes declines, suggesting that that the reduction may a com-
pensatory consequence of their weight-gain [434].

Partly as a result of many demonstrations of mesocorticolimbic
hyper-reactivity to food cues in individuals with obesity, the weight of
neuroimaging data may have shifted away from the reward deficiency
hypothesis and toward the incentive sensitization hypothesis in the past
10 years [2,4,402,435,436]. For example, a recent meta-analysis of
fMRI results concluded that “Extant data provide strong support for the
incentive sensitization theory of obesity and… only minimal support for
the reward deficit (deficiency) theory” [2]. Similarly, another meta-
analysis review of brain imaging studies concluded that “we did not
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find univocal evidence in favor of a Reward Deficit Hypothesis nor for a
systematic deficit of inhibitory cognitive control. We conclude that the
available brain activation data (for human obesity)… can be best
framed within an Incentive Sensitization Theory” [4]. Such conclusions
draw on results such as observation of fMRI hyper-reactivity to food
cues in striatum, orbitofrontal cortex and insula cortex in obesity-prone
human adolescents even before those individuals went on to gain
weight several years later [435]. They are also consistent with reports
of higher levels of dopamine release in neostriatum elicited by palatable
foods in obese individuals with binge eating disorders than individuals
who were not binge eaters, suggesting mesolimbic hyper-reactivity
persisted in individuals who binge-eat [402]. Similarly, people who are
heavier have been reported to have higher striatal dopamine release
than people who were lighter, leading the authors of the study to
conclude their results “suggest increase dopamine release with in-
creasing body mass… consistent with… increasing behavioral salience
of food being a risk factor for obesity” [436].

8. Conclusion

Mesocorticolimbic structures including the nucleus accumbens,
ventral pallidum, orbitofrontal cortex, and insula contain localized
hedonic hotspots in specific subregions, where opioid and other specific
forms of stimulation can enhance ‘liking’ reactions to palatable foods.
The same structures often also contain separable hedonic coldspots
where the same neurobiological stimulations suppress ‘liking’. These
hotspots and coldspots are nestled within larger mesocorticostriatal
‘wanting’ circuitry where many of the same forms of stimulation plus
others (e.g. dopamine) robustly generate intense cue-triggered in-
centive salience, amplifying motivation to seek and consume palatable
food rewards, whether or not ‘liking’ is simultaneously enhanced.

The distinguishable identities of brain systems for ‘liking’ versus
‘wanting’ food rewards has implications for understanding at least some
cases of human obesity, binge-eating, and related eating disorders. This
particularly appears to apply in the form of incentive-sensitization
signatures of hyper-reactivity of brain ‘wanting’ systems in some in-
dividuals with obesity or binge eating disorder, which may cause over-
eating without necessarily being accompanied by enhanced food
‘liking’. Future research in this area will continue to extend under-
standing of how mesocorticolimbic systems interact with hypothalamic
homeostatic signals to control normal appetite and food reward, and
how specific dysregulations in motivation systems contribute to eating
disorders and obesity.
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